www.mystudybro.com

Mathematics M1

Examiner's use only

Team Leader's use only

1

2

3

4

5

6

7

8

Past Paper

This resource was created and owned by Pearson Edexcel

Centre No.				Paper Reference			Surname	Initial(s)			
Candidate No.			6	6	7	7	/	0	1	Signature	

Paper Reference(s)

6677/01

Edexcel GCE

Mechanics M1

Advanced/Advanced Subsidiary

Wednesday 21 May 2008 – Afternoon

Time: 1 hour 30 minutes

Items included with question papers Materials required for examination Mathematical Formulae (Green)

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and intergration, or have retrievable mathematical formulae stored in them.

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initials and signature. Check that you have the correct question paper.

Answer ALL the questions. Write your answers in the spaces provided in this question paper.

If you need more space to complete your answer to any question, use additional answer sheets.

Whenever a numerical value of g is required, take $g = 9.8 \text{ m s}^{-2}$.

When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information for Candidates

A booklet 'Mathematical Formulae and Statistical Tables' is provided.

Full marks may be obtained for answers to ALL questions.

The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2).

There are 8 questions in this question paper. The total mark for this question paper is 75.

There are 24 pages in this question paper. Any blank pages are indicated.

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled. You should show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit.

This publication may be reproduced only in accordance with Edexcel Limited copyright policy. ©2008 Edexcel Limited

Turn over

Total

■ Past Paper

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

6677 Leave

1.	Two particles P and Q have mass 0.4 kg and 0.6 kg respectively. The particles are in at rest on a smooth horizontal table. Particle P is given an impulse of magnitude 3 the direction PQ .	itially N s in
	(a) Find the speed of P immediately before it collides with Q .	(3)
	Immediately after the collision between P and Q , the speed of Q is 5 m s ⁻¹ .	
	(b) Show that immediately after the collision P is at rest.	(3)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

June 2008 6677 Mechanics M1 **Final Mark Scheme**

Ougation	i illat mark scheme	
Question Number	Scheme	Marks
1.	(a) $I = mv \implies 3 = 0.4 \times v$ $v = 7.5 \text{ (ms}^{-1}\text{)}$	M1 A1 A1 (3)
	(b) $ \begin{array}{ccc} 7.5 \\ \hline 0.4 \\ \hline v \\ \hline \end{array} $ $ \begin{array}{cccc} 0.6 \\ \hline & 5 \\ \hline \end{array} $ $ \begin{array}{cccc} LM & 0.4 \times 7.5 = 0.4v + 0.6 \times 5 \\ \end{array} $	M1 A1
	$0 = 0.4v \implies v = 0 *$ cso	A1 (3) [6]
2.	(a) $v^2 = u^2 + 2as \implies 17.5^2 = u^2 + 2 \times 9.8 \times 10$ Leading to $u = 10.5$	M1 A1 A1 (3)
	(b) $v = u + at \implies 17.5 = -10.5 + 9.8T$	M1 A1 f.t.
	$T = 2\frac{6}{7}$ (s)	DM1 A1 (4)
	Alternatives for (b) $s = (\frac{u+v}{2})T \Rightarrow 10 = (\frac{17.5 + -10.5}{2})T$ $\frac{20}{7} = T$	[7] M1A1 f.t. DM1A1 (4)
	OR $s = ut + \frac{1}{2}at^2 \implies -10 = 10.5t - 4.9t^2$ Leading to $T = 2\frac{6}{7}, \left(-\frac{5}{7}\right)$ Rejecting negative	M1 A1 f.t. DM1 A1 (4)
	(b) can be done independently of (a) $s = vt - \frac{1}{2}at^2 \implies -10 = -17.5t + 4.9t^2$	M1 A1
	Leading to $T = 2\frac{6}{7}, \frac{5}{7}$	DM1
	For final A1, second solution has to be rejected. $\frac{5}{7}$ leads to a negative u .	A1 (4)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel ■ Past Paper

6677

nd	
of u,	(3)
	(3)
of T.	(4)
	(4)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

June 2008 6677 Mechanics M1 **Final Mark Scheme**

Ougation	i illat mark scheme	
Question Number	Scheme	Marks
1.	(a) $I = mv \implies 3 = 0.4 \times v$ $v = 7.5 \text{ (ms}^{-1}\text{)}$	M1 A1 A1 (3)
	(b) $ \begin{array}{ccc} 7.5 \\ \hline 0.4 \\ \hline v \\ \hline \end{array} $ $ \begin{array}{cccc} 0.6 \\ \hline & 5 \\ \hline \end{array} $ $ \begin{array}{cccc} LM & 0.4 \times 7.5 = 0.4v + 0.6 \times 5 \\ \end{array} $	M1 A1
	$0 = 0.4v \implies v = 0 *$ cso	A1 (3) [6]
2.	(a) $v^2 = u^2 + 2as \implies 17.5^2 = u^2 + 2 \times 9.8 \times 10$ Leading to $u = 10.5$	M1 A1 A1 (3)
	(b) $v = u + at \implies 17.5 = -10.5 + 9.8T$	M1 A1 f.t.
	$T = 2\frac{6}{7}$ (s)	DM1 A1 (4)
	Alternatives for (b) $s = (\frac{u+v}{2})T \Rightarrow 10 = (\frac{17.5 + -10.5}{2})T$ $\frac{20}{7} = T$	[7] M1A1 f.t. DM1A1 (4)
	OR $s = ut + \frac{1}{2}at^2 \implies -10 = 10.5t - 4.9t^2$ Leading to $T = 2\frac{6}{7}, \left(-\frac{5}{7}\right)$ Rejecting negative	M1 A1 f.t. DM1 A1 (4)
	(b) can be done independently of (a) $s = vt - \frac{1}{2}at^2 \implies -10 = -17.5t + 4.9t^2$	M1 A1
	Leading to $T = 2\frac{6}{7}, \frac{5}{7}$	DM1
	For final A1, second solution has to be rejected. $\frac{5}{7}$ leads to a negative u .	A1 (4)

■ Past Paper

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

3.	A particle P of mass 0.4 kg moves under the action of a single constant force \mathbf{F} new	tons
•	The acceleration of P is $(6\mathbf{i} + 8\mathbf{j})$ m s ⁻² . Find	tons.
	(a) the angle between the acceleration and i,	
		(2)
	(b) the magnitude of F .	(3)
	At time t seconds the velocity of P is \mathbf{v} m s ⁻¹ . Given that when $t = 0$, $\mathbf{v} = 9\mathbf{i} - 10\mathbf{j}$,	
	(c) find the velocity of P when $t = 5$.	(3)

Question Number	SCHOMO		
3.	$\tan \theta = \frac{8}{6}$ $\theta \approx 53^{\circ}$	M1 A1 (2	2)
	(b) $\mathbf{F} = 0.4 \left(6\mathbf{i} + 8\mathbf{j} \right) \left(= 2.4\mathbf{i} + 3.2\mathbf{j} \right)$ $\left \mathbf{F} \right = \sqrt{2.4^2 + 3.2^2} = 4$ The method marks can be gained in either order.	M1 M1 A1 (3	3)
	(c) $\mathbf{v} = 9\mathbf{i} - 10\mathbf{j} + 5(6\mathbf{i} + 8\mathbf{j})$ $= 39\mathbf{i} + 30\mathbf{j} \text{ (ms}^{-1})$		(3) 8]
4.	(a) 25 shape 25, 10, 30, 90 0 30 90 t	B1 B1	(2)
	(b) $30 \times 25 + \frac{1}{2}(25+10)t + 10(60-t) = 1410$ 7.5t = 60 t = 8 (s)	M1 <u>A1</u> A DM1 A1	.1
	$a = \frac{25 - 10}{8} = 1.875 \text{ (ms}^{-2}\text{)}$	M1 A1	(7) [9]

■ Past Paper

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

6677

ıly	A car is moving along a straight horizontal road. The speed of the car as it passes the poin A is 25 m s ⁻¹ and the car maintains this speed for 30 s. The car then decelerates uniformly to a speed of 10 m s ⁻¹ . The speed of 10 m s ⁻¹ is then maintained until the car passes the point B . The time taken to travel from A to B is 90 s and $AB = 1410$ m.	4.
A	(a) Sketch, in the space below, a speed-time graph to show the motion of the car from to <i>B</i> .	
2)		
7)	(b) Calculate the deceleration of the car as it decelerates from 25 m s ⁻¹ to 10 m s ⁻¹ . (7)	
_		
_		
_		
_		
_		
_		
_		
_		
_		

Question Number	SCHOMO		
3.	$\tan \theta = \frac{8}{6}$ $\theta \approx 53^{\circ}$	M1 A1 (2	2)
	(b) $\mathbf{F} = 0.4 \left(6\mathbf{i} + 8\mathbf{j} \right) \left(= 2.4\mathbf{i} + 3.2\mathbf{j} \right)$ $\left \mathbf{F} \right = \sqrt{2.4^2 + 3.2^2} = 4$ The method marks can be gained in either order.	M1 M1 A1 (3	3)
	(c) $\mathbf{v} = 9\mathbf{i} - 10\mathbf{j} + 5(6\mathbf{i} + 8\mathbf{j})$ $= 39\mathbf{i} + 30\mathbf{j} \text{ (ms}^{-1})$		(3) 8]
4.	(a) 25 shape 25, 10, 30, 90 0 30 90 t	B1 B1	(2)
	(b) $30 \times 25 + \frac{1}{2}(25+10)t + 10(60-t) = 1410$ 7.5t = 60 t = 8 (s)	M1 <u>A1</u> A DM1 A1	.1
	$a = \frac{25 - 10}{8} = 1.875 \text{ (ms}^{-2}\text{)}$	M1 A1	(7) [9]

Past Paper

This resource was created and owned by Pearson Edexcel

6677 Leave blank

5.

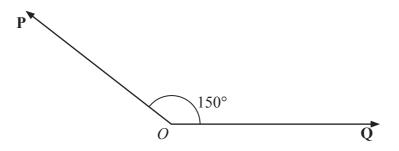


Figure 1

Two forces P and Q act on a particle at a point O. The force P has magnitude 15 N and the force \mathbf{Q} has magnitude X newtons. The angle between \mathbf{P} and \mathbf{Q} is 150°, as shown in Figure 1. The resultant of P and Q is R.

Given that the angle between **R** and **Q** is 50°, find

(a) the magnitude of \mathbf{R} ,

(4)

(b) the value of X.

(5)

Question Number	Scheme	Marks
5.	(a) $ \begin{array}{c} & & & \\ & & & \\ \hline $	M1 A1 DM1 A1 (4)
	(b) $(\rightarrow) X - 15\cos 30^{\circ} = R\cos 50^{\circ}$ ft their R $X \approx 19.3 \text{ (N)}$	M1 A2 ft DM1 A1 (5) [9]
	Alternatives using sine rule in (a) or (b); cosine rule in (b)	
	$(a) \frac{R}{\sin 30^{\circ}} = \frac{15}{\sin 50^{\circ}}$	M1 A1
	$R \approx 9.79 \text{ (N)}$	DM1 A1 (4)
	(b) $\frac{X}{\sin 100^{\circ}} = \frac{15}{\sin 50^{\circ}} = \frac{R}{\sin 30^{\circ}}$	M1 A2 ft on R
	$X \approx 19.3 \text{ (N)}$	DM1 A1 (5)
	$X^{2} = R^{2} + 15^{2} - 2 \times 15 \times R \cos 100^{o}$ OR : cosine rule; any of $R^{2} = X^{2} + 15^{2} - 2 \times 15 \times X \cos 30^{o}$ $15^{2} = R^{2} + X^{2} - 2 \times X \times R \cos 50^{o}$	M1 A2 ft on R
	$X \approx 19.3 \text{ (N)}$	DM1 A1 (5)

Past Paper

This resource was created and owned by Pearson Edexcel

6677 Leave blank

6.

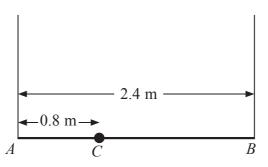


Figure 2

A plank AB has mass 12 kg and length 2.4 m. A load of mass 8 kg is attached to the plank at the point C, where AC = 0.8 m. The loaded plank is held in equilibrium, with AB horizontal, by two vertical ropes, one attached at A and the other attached at B, as shown in Figure 2. The plank is modelled as a uniform rod, the load as a particle and the ropes as light inextensible strings.

(a) Find the tension in the rope attached at B.

(4)

The plank is now modelled as a non-uniform rod. With the new model, the tension in the rope attached at A is 10 N greater than the tension in the rope attached at B.

(b) Find the distance of the centre of mass of the plank from A.

	U)
`	,

Question Number	Scheme	Marks
6.	(a) $A \longrightarrow 2.4 \longrightarrow B$ $8g \longrightarrow 12g$ $M(A) \qquad 8g \times 0.8 + 12g \times 1.2 = X \times 2.4$ $X \approx 85 \text{ (N)} \qquad \text{accept 84.9, } \frac{26g}{3}$ (b) $X + 10 \longrightarrow A \longrightarrow A$ $A \longrightarrow A \longrightarrow A \longrightarrow A$ $8g \longrightarrow 12g$ $A \longrightarrow B$ $A \longrightarrow B$	M1 A1 DM1 A1 (4)
	$R(\uparrow) \qquad \underline{(X+10)} + \underline{X} = 8g + 12g$ $(X = 93)$	M1 <u>B1</u> A1
	$M(A)$ $8g \times 0.8 + 12g \times x = X \times 2.4$ $x = 1.4$ (m) accept 1.36	M1 A1 A1 (6) [10]

6677

Leave blank

7.

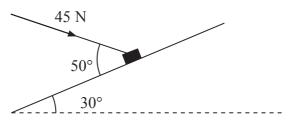


Figure 3

A package of mass 4 kg lies on a rough plane inclined at 30° to the horizontal. The package is held in equilibrium by a force of magnitude 45 N acting at an angle of 50° to the plane, as shown in Figure 3. The force is acting in a vertical plane through a line of greatest slope of the plane. The package is in equilibrium on the point of moving up the plane. The package is modelled as a particle. Find

(a) the magnitude of the normal reaction of the plane on the package,

(5)

(b) the coefficient of friction between the plane and the package.

(6)

Question Number	Scheme	Marks
7.	(a) 45 N μR 30° $4g$	
	$R = 45\cos 40^{\circ} + 4g\cos 30^{\circ}$ $R \approx 68$ accept 68.4 (b) Use of $F = \mu R$	M1 A2 (1, 0) DM1 A1 (5) M1
	$F + 4g \sin 30 = 45 \cos 50^{\circ}$ Leading to $\mu \approx 0.14$ accept 0.136	M1 A2 (1, 0) DM1 A1 (6) [11]

This resource was created and owned by Pearson Edexcel

6677

Leave blank

8.

Figure 4

Two particles P and Q, of mass 2 kg and 3 kg respectively, are joined by a light inextensible string. Initially the particles are at rest on a rough horizontal plane with the string taut. A constant force \mathbf{F} of magnitude 30 N is applied to Q in the direction PQ, as shown in Figure 4. The force is applied for 3 s and during this time Q travels a distance of 6 m. The coefficient of friction between each particle and the plane is μ . Find

(a) the acceleration of Q,

(2)

(b) the value of μ ,

(4)

(c) the tension in the string.

(4)

(d) State how in your calculation you have used the information that the string is inextensible.

(1)

When the particles have moved for 3 s, the force **F** is removed.

(e) Find the time between the instant that the force is removed and the instant that Q comes to rest.

(4)

Question Number	Scheme	Marks
8.	(a) $T \qquad T \qquad 30$ $\mu 2g \qquad \mu 3g$	
	$s = ut + \frac{1}{2}at^{2} \implies 6 = \frac{1}{2}a \times 9$ $a = 1\frac{1}{3} \text{ (ms}^{-2}\text{)}$	M1 A1 (2)
	(b) N2L for system $30 - \mu 5g = 5a$ ft their a , accept symbol	M1 A1ft
	$\mu = \frac{14}{3g} = \frac{10}{21}$ or awrt 0.48	DM1 A1 (4)
	(c) N2L for P $T - \mu 2g = 2a$ ft their μ , their a , accept symbols $T - \frac{14}{3g} \times 2g = 2 \times \frac{4}{3}$	M1 A1 ft
	Leading to $T = 12$ (N) awrt 12	DM1 A1 (4)
	Alternatively N2L for Q $30 - T - \mu 3g = 3a$ Leading to $T = 12$ (N) awrt 12	M1 A1 DM1 A1
(d) The acceleration of P and Q (or the whole of the system) is the same.		B1 (1)
(e) $v = u + at \implies v = \frac{4}{3} \times 3 = 4$		B1 ft on a
	N2L (for system or either particle) $-5\mu g = 5a$ or equivalent $a = -\mu g$	M1
	$v = u + at \implies 0 = 4 - \mu gt$ Leading to $t = \frac{6}{7}$ (s) accept 0.86, 0.857	DM1 A1 (4)
	$\frac{1}{7} = \frac{1}{7} = \frac{1}$	[15]