www.mystudybro.com

Mathematics M1

Examiner's use only

Team Leader's use only

1

2

3

4

5

6

7

8

Past Paper

This resource was created and owned by Pearson Edexcel

6677

Centre No.					Pape	r Refer	ence			Surname	Initial(s)
Candidate No.			6	6	7	7	/	0	1	Signature	

Paper Reference(s)

6677/01

Edexcel GCE

Mechanics M1

Advanced/Advanced Subsidiary

Friday 22 May 2009 - Morning

Time: 1 hour 30 minutes

Mathematical Formulae (Orange or

Mathematical Formulae (Orange or Green)

Items included with question papers

Nil

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initials and signature. Check that you have the correct question paper.

Answer ALL the questions.

You must write your answer to each question in the space following the question.

If you need more space to complete your answer to any question, use additional answer sheets.

Whenever a numerical value of g is required, take $g = 9.8 \text{ m s}^{-2}$.

When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information for Candidates

A booklet 'Mathematical Formulae and Statistical Tables' is provided.

Full marks may be obtained for answers to ALL questions.

The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2).

There are 8 questions in this question paper. The total mark for this paper is 75.

There are 24 pages in this question paper. Any blank pages are indicated.

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled. You should show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit.

This publication may be reproduced only in accordance with Edexcel Limited copyright policy. ©2009 Edexcel Limited

N34275A
W850/R6677/57570 3/5/4/3

Turn over

Total

Mathematics M1

■ Past Paper

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

6677 Leave

Three posts P , Q and R , are fixed in that order at the side of a straight horizontal road. The distance from P to Q is 45 m and the distance from Q to R is 120 m. A car is moving along the road with constant acceleration a m s ⁻² . The speed of the car, as it passes P , is u m s ⁻¹ . The car passes Q two seconds after passing P , and the car passes R four seconds after passing Q . Find							
(i) the value of u ,							
(ii) the value of a.							
	7)						
	_						
	_						
	_						
	_						
	_						
	_						
	_						
	_						
	_						
	_						
	_						
	_						
	_						
	_						
	_						
	_						
	_						
	_						
	_						

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

June 2009 6677 Mechanics M1 Mark Scheme

Ques		Scheme	Mar	rks
Q1				
		$45 = 2u + \frac{1}{2}a2^2 \implies 45 = 2u + 2a$	M1 A1	
		$165 = 6u + \frac{1}{2}a6^2 \Rightarrow 165 = 6u + 18a$	M1 A1	
		eliminating either u or a	M1	
		u = 20 and $a = 2.5$	A1 A1	[7]
Q2	(a) (b)	$\tan \theta = \frac{p}{2p} \Longrightarrow \theta = 26.6^{\circ}$	M1 A1	(2)
	(6)	$\mathbf{R} = (\mathbf{i} - 3\mathbf{j}) + (p\mathbf{i} + 2p\mathbf{j}) = (1+p)\mathbf{i} + (-3+2p)\mathbf{j}$	M1 A1	
		R is parallel to $\mathbf{i} \implies (-3 + 2p) = 0$	DM1	
		$\Rightarrow p = \frac{3}{2}$	A1	(4) [6]
Q3	(a)	For A: $-\frac{7mu}{2} = 2m(v_A - 2u)$	M1 A1	
		$v_A = \frac{u}{4}$	A1	(3)
	(b)	For B: $\frac{7mu}{2} = m(v_B3u)$	M1 A1	
		$v_B = \frac{u}{2}$	A1	(3)
		OR CLM:	OR	
		$4mu - 3mu = 2m\frac{u}{4} + mv_B$	M1 A1	
		$v_B = \frac{u}{2}$	A1	(3)
				[6]

■ Past Paper

Leave	
blank	

A particle is acted upon by two forces $\mathbf{F_1}$ and $\mathbf{F_2}$, given by	
$\mathbf{F}_{1} = (\mathbf{i} - 3\mathbf{j}) \mathbf{N},$	
$\mathbf{F_2} = (p\mathbf{i} + 2p\mathbf{j}) \text{ N}$, where p is a positive constant.	
(a) Find the angle between $\mathbf{F_2}$ and \mathbf{j} .	(2)
The resultant of $\mathbf{F_1}$ and $\mathbf{F_2}$ is \mathbf{R} . Given that \mathbf{R} is parallel to \mathbf{i} ,	
(b) find the value of p .	(4)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

June 2009 6677 Mechanics M1 Mark Scheme

Ques		Scheme	Mar	rks
Q1				
		$45 = 2u + \frac{1}{2}a2^2 \implies 45 = 2u + 2a$	M1 A1	
		$165 = 6u + \frac{1}{2}a6^2 \Rightarrow 165 = 6u + 18a$	M1 A1	
		eliminating either u or a	M1	
		u = 20 and $a = 2.5$	A1 A1	[7]
Q2	(a) (b)	$\tan \theta = \frac{p}{2p} \Longrightarrow \theta = 26.6^{\circ}$	M1 A1	(2)
	(6)	$\mathbf{R} = (\mathbf{i} - 3\mathbf{j}) + (p\mathbf{i} + 2p\mathbf{j}) = (1+p)\mathbf{i} + (-3+2p)\mathbf{j}$	M1 A1	
		R is parallel to $\mathbf{i} \implies (-3 + 2p) = 0$	DM1	
		$\Rightarrow p = \frac{3}{2}$	A1	(4) [6]
Q3	(a)	For A: $-\frac{7mu}{2} = 2m(v_A - 2u)$	M1 A1	
		$v_A = \frac{u}{4}$	A1	(3)
	(b)	For B: $\frac{7mu}{2} = m(v_B3u)$	M1 A1	
		$v_B = \frac{u}{2}$	A1	(3)
		OR CLM:	OR	
		$4mu - 3mu = 2m\frac{u}{4} + mv_B$	M1 A1	
		$v_B = \frac{u}{2}$	A1	(3)
				[6]

■ Past Paper

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

	7
Leave	
Jank	

3.	Two particles A and B are moving on a smooth horizontal plane. The mass of A is $2m$ and the mass of B is m . The particles are moving along the same straight line but in opposite directions and they collide directly. Immediately before they collide the speed of A is $2u$ and the speed of B is $3u$. The magnitude of the impulse received by each particle in the	blan						
	collision is $\frac{7mu}{2}$.							
	Find							
	(a) the speed of A immediately after the collision, (3)							
	(b) the speed of <i>B</i> immediately after the collision.							
	(3)							

6

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

June 2009 6677 Mechanics M1 Mark Scheme

Ques		Scheme	Mar	rks
Q1				
		$45 = 2u + \frac{1}{2}a2^2 \implies 45 = 2u + 2a$	M1 A1	
		$165 = 6u + \frac{1}{2}a6^2 \Rightarrow 165 = 6u + 18a$	M1 A1	
		eliminating either u or a	M1	
		u = 20 and $a = 2.5$	A1 A1	[7]
Q2	(a) (b)	$\tan \theta = \frac{p}{2p} \Longrightarrow \theta = 26.6^{\circ}$	M1 A1	(2)
	(6)	$\mathbf{R} = (\mathbf{i} - 3\mathbf{j}) + (p\mathbf{i} + 2p\mathbf{j}) = (1+p)\mathbf{i} + (-3+2p)\mathbf{j}$	M1 A1	
		R is parallel to $\mathbf{i} \implies (-3 + 2p) = 0$	DM1	
		$\Rightarrow p = \frac{3}{2}$	A1	(4) [6]
Q3	(a)	For A: $-\frac{7mu}{2} = 2m(v_A - 2u)$	M1 A1	
		$v_A = \frac{u}{4}$	A1	(3)
	(b)	For B: $\frac{7mu}{2} = m(v_B3u)$	M1 A1	
		$v_B = \frac{u}{2}$	A1	(3)
		OR CLM:	OR	
		$4mu - 3mu = 2m\frac{u}{4} + mv_B$	M1 A1	
		$v_B = \frac{u}{2}$	A1	(3)
				[6]

Mathematics M1

■ Past Paper

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

6677 Leave

•	A small brick of mass 0.5 kg is placed on a rough plane which is inclined to the horizontal at an angle θ , where $\tan \theta = \frac{4}{3}$, and released from rest. The coefficient of friction between the brick and the plane is $\frac{1}{3}$.
	Find the acceleration of the brick. (9)

			1
	stion nber	Scheme	Marks
Q4		$0.5g\sin\theta - F = 0.5a$	M1 A1 A1
		$F = \frac{1}{3}R$ seen	B1
		$R = 0.5g\cos\theta$	M1 A1
		Use of $\sin \theta = \frac{4}{5}$ or $\cos \theta = \frac{3}{5}$ or decimal equiv or decimal angle e.g 53.1° or 53°	B1
		$a = \frac{3g}{5}$ or 5.88 m s ⁻² or 5.9 m s ⁻²	DM1 A1 [9]
Q5		$F = P\cos 50^{\circ}$	M1 A1
		F = 0.2R seen or implied.	B1
		$P\sin 50^\circ + R = 15g$	M1 A1 A1
		Eliminating R ; Solving for P ; P = 37 (2 SF)	DM1;D M1; A1
		1 37 (2 31)	[9]
Q6	(a)	For whole system: $1200 - 400 - 200 = 1000a$	M1 A1
		$a = 0.6 \text{ m s}^{-2}$	A1 (3)
	(b)	For trailer: $T - 200 = 200 \times 0.6$	M1 A1 ft
		T = 320 N	A1
		OR : For car: $1200 - 400 - T = 800 \times 0.6$	OR: M1 A1 ft
		T = 320 N	A1 (3)
	(c)	For trailer: $200 + 100 = 200f$ or $-200f$	M1 A1
		$f = 1.5 \text{ m s}^{-2} (-1.5)$	A1
		For car: $400 + F - 100 = 800f$ or $-800f$	M1 A2
		F = 900	A1 (7)
		(N.B. For both: $400 + 200 + F = 1000f$)	[13]
			1 []

■ Past Paper

This resource was created and owned by Pearson Edexcel

6677 Leave blank

5.

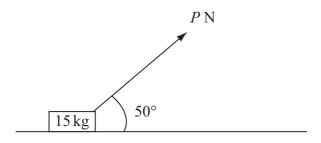


Figure 1

A small box of mass 15 kg rests on a rough horizontal plane. The coefficient of friction between the box and the plane is 0.2. A force of magnitude P newtons is applied to the box at 50° to the horizontal, as shown in Figure 1. The box is on the point of sliding along the plane.

Find the value of *P*, giving your answer to 2 significant figures. **(9)**

			1
	stion nber	Scheme	Marks
Q4		$0.5g\sin\theta - F = 0.5a$	M1 A1 A1
		$F = \frac{1}{3}R$ seen	B1
		$R = 0.5g\cos\theta$	M1 A1
		Use of $\sin \theta = \frac{4}{5}$ or $\cos \theta = \frac{3}{5}$ or decimal equiv or decimal angle e.g 53.1° or 53°	B1
		$a = \frac{3g}{5}$ or 5.88 m s ⁻² or 5.9 m s ⁻²	DM1 A1 [9]
Q5		$F = P\cos 50^{\circ}$	M1 A1
		F = 0.2R seen or implied.	B1
		$P\sin 50^\circ + R = 15g$	M1 A1 A1
		Eliminating R ; Solving for P ; P = 37 (2 SF)	DM1;D M1; A1
		1 37 (2 31)	[9]
Q6	(a)	For whole system: $1200 - 400 - 200 = 1000a$	M1 A1
		$a = 0.6 \text{ m s}^{-2}$	A1 (3)
	(b)	For trailer: $T - 200 = 200 \times 0.6$	M1 A1 ft
		T = 320 N	A1
		OR : For car: $1200 - 400 - T = 800 \times 0.6$	OR: M1 A1 ft
		T = 320 N	A1 (3)
	(c)	For trailer: $200 + 100 = 200f$ or $-200f$	M1 A1
		$f = 1.5 \text{ m s}^{-2} (-1.5)$	A1
		For car: $400 + F - 100 = 800f$ or $-800f$	M1 A2
		F = 900	A1 (7)
		(N.B. For both: $400 + 200 + F = 1000f$)	[13]
			1 []

Mathematics M1

■ Past Paper

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

6677 Leave

6.	A car of mass 800 kg pulls a trailer of mass 200 kg along a straight horizontal road using a light towbar which is parallel to the road. The horizontal resistances to motion of the car and the trailer have magnitudes 400 N and 200 N respectively. The engine of the car produces a constant horizontal driving force on the car of magnitude 1200 N. Find			
	(a) the acceleration of the car and trailer, (3)			
	(b) the magnitude of the tension in the towbar. (3)			
	The car is moving along the road when the driver sees a hazard ahead. He reduces the force produced by the engine to zero and applies the brakes. The brakes produce a force on the car of magnitude F newtons and the car and trailer decelerate. Given that the resistances to motion are unchanged and the magnitude of the thrust in the towbar is 100N ,			
	(c) find the value of F . (7)			

	stion nber	Scheme	Marks
Q4		$0.5g\sin\theta - F = 0.5a$	M1 A1 A1
		$F = \frac{1}{3}R$ seen	B1
		$R = 0.5g\cos\theta$	M1 A1
		Use of $\sin \theta = \frac{4}{5}$ or $\cos \theta = \frac{3}{5}$ or decimal equiv or decimal angle e.g 53.1° or 53°	B1
		$a = \frac{3g}{5}$ or 5.88 m s ⁻² or 5.9 m s ⁻²	DM1 A1 [9]
Q5		$F = P\cos 50^{\circ}$	M1 A1
		F = 0.2R seen or implied.	B1
		$P\sin 50^\circ + R = 15g$	M1 A1 A1
		Eliminating R ; Solving for P ; P = 37 (2 SF)	DM1;D M1; A1
		1 37 (2 31)	[9]
Q6	(a)	For whole system: $1200 - 400 - 200 = 1000a$	M1 A1
		$a = 0.6 \text{ m s}^{-2}$	A1 (3)
	(b)	For trailer: $T - 200 = 200 \times 0.6$	M1 A1 ft
		T = 320 N	A1
		OR : For car: $1200 - 400 - T = 800 \times 0.6$	OR: M1 A1 ft
		T = 320 N	A1 (3)
	(c)	For trailer: $200 + 100 = 200f$ or $-200f$	M1 A1
		$f = 1.5 \text{ m s}^{-2} (-1.5)$	A1
		For car: $400 + F - 100 = 800f$ or $-800f$	M1 A2
		F = 900	A1 (7)
		(N.B. For both: $400 + 200 + F = 1000f$)	[13]
L			[.0]

6677 Leave

blank

7.

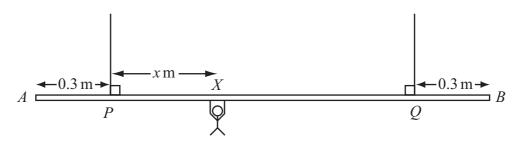


Figure 2

A beam AB is supported by two vertical ropes, which are attached to the beam at points P and Q, where AP = 0.3 m and BQ = 0.3 m. The beam is modelled as a uniform rod, of length 2 m and mass 20 kg. The ropes are modelled as light inextensible strings. A gymnast of mass 50 kg hangs on the beam between P and Q. The gymnast is modelled as a particle attached to the beam at the point X, where PX = x m, 0 < x < 1.4 as shown in Figure 2. The beam rests in equilibrium in a horizontal position.

(a) Show that the tension in the rope attached to the beam at P is (588 - 350x) N.

(3)

(b) Find, in terms of x, the tension in the rope attached to the beam at Q.

(3)

(c) Hence find, justifying your answer carefully, the range of values of the tension which could occur in each rope.

(3)

Given that the tension in the rope attached at Q is three times the tension in the rope attached at P,

(d) find the value of x.

(3)

Question Number		Scheme	Marks	S
Q7 (a)		$M(Q)$, $50g(1.4-x)+20g \times 0.7 = T_p \times 1.4$	M1 A1	
		$T_P = 588 - 350x$ Printed answer	A1	(3)
	(b)	$M(P)$, $50gx + 20g \times 0.7 = T_Q \times 1.4$ or $R(\uparrow)$, $T_P + T_Q = 70g$	M1 A1	
		$T_Q = 98 + 350x$	A1	(3)
	(c)	Since $0 < x < 1.4$, $98 < T_p < 588$ and $98 < T_Q < 588$	M1 A1 A	1 (3)
	(d)	98 + 350x = 3 (588 - 350x)	M1	
		x = 1.19	DM1 A1	(3) [12]
Q8	(a)	$ \mathbf{v} = \sqrt{1.2^2 + (-0.9)^2} = 1.5 \text{ m s}^{-1}$	M1 A1	(2)
	(b)	$(\mathbf{r}_H =)100\mathbf{j} + t(1.2\mathbf{i} - 0.9\mathbf{j}) \text{ m}$	M1 A1	(2)
	(c)	$(\mathbf{r}_K =)9\mathbf{i} + 46\mathbf{j} + t(0.75\mathbf{i} + 1.8\mathbf{j}) \text{ m}$	M1 A1	
	(4)	$\overrightarrow{HK} = \mathbf{r}_K - \mathbf{r}_H = (9 - 0.45t)\mathbf{i} + (2.7t - 54)\mathbf{j}$ m Printed Answer	M1 A1	(4)
	(d)	Meet when $\overrightarrow{HK} = 0$		
		(9-0.45t) = 0 and $(2.7t-54) = 0$	M1 A1	
		t = 20 from both equations	A1	
		$\mathbf{r}_{K} = \mathbf{r}_{H} = (24\mathbf{i} + 82\mathbf{j}) \text{ m}$	DM1 A1 o	cso
				(5)
			I	[13]

This resource was created and owned by Pearson Edexcel

Leave blank

8. [In this question \mathbf{i} and \mathbf{j} are horizontal unit vectors due east and due north respectively.]

A hiker H is walking with constant velocity $(1.2\mathbf{i} - 0.9\mathbf{j})$ m s⁻¹.

(a) Find the speed of H.

(2)

Figure 3

A horizontal field OABC is rectangular with OA due east and OC due north, as shown in Figure 3. At twelve noon hiker H is at the point Y with position vector 100 \mathbf{j} m, relative to the fixed origin O.

(b) Write down the position vector of H at time t seconds after noon.

(2)

At noon, another hiker K is at the point with position vector $(9\mathbf{i} + 46\mathbf{j})$ m. Hiker K is moving with constant velocity $(0.75\mathbf{i} + 1.8\mathbf{j})$ m s⁻¹.

(c) Show that, at time t seconds after noon,

$$\overrightarrow{HK} = \left[\left(9 - 0.45t \right) \mathbf{i} + \left(2.7t - 54 \right) \mathbf{j} \right] \text{ metres.}$$

(4)

Hence,

(d) show that the two hikers meet and find the position vector of the point where they meet.

(5)

Question Number		Scheme	Marks	S
Q7 (a)		$M(Q)$, $50g(1.4-x)+20g \times 0.7 = T_p \times 1.4$	M1 A1	
		$T_P = 588 - 350x$ Printed answer	A1	(3)
	(b)	$M(P)$, $50gx + 20g \times 0.7 = T_Q \times 1.4$ or $R(\uparrow)$, $T_P + T_Q = 70g$	M1 A1	
		$T_Q = 98 + 350x$	A1	(3)
	(c)	Since $0 < x < 1.4$, $98 < T_p < 588$ and $98 < T_Q < 588$	M1 A1 A	1 (3)
	(d)	98 + 350x = 3 (588 - 350x)	M1	
		x = 1.19	DM1 A1	(3) [12]
Q8	(a)	$ \mathbf{v} = \sqrt{1.2^2 + (-0.9)^2} = 1.5 \text{ m s}^{-1}$	M1 A1	(2)
	(b)	$(\mathbf{r}_H =)100\mathbf{j} + t(1.2\mathbf{i} - 0.9\mathbf{j}) \text{ m}$	M1 A1	(2)
	(c)	$(\mathbf{r}_K =)9\mathbf{i} + 46\mathbf{j} + t(0.75\mathbf{i} + 1.8\mathbf{j}) \text{ m}$	M1 A1	
	(4)	$\overrightarrow{HK} = \mathbf{r}_K - \mathbf{r}_H = (9 - 0.45t)\mathbf{i} + (2.7t - 54)\mathbf{j}$ m Printed Answer	M1 A1	(4)
	(d)	Meet when $\overrightarrow{HK} = 0$		
		(9-0.45t) = 0 and $(2.7t-54) = 0$	M1 A1	
		t = 20 from both equations	A1	
		$\mathbf{r}_{K} = \mathbf{r}_{H} = (24\mathbf{i} + 82\mathbf{j}) \text{ m}$	DM1 A1 o	cso
				(5)
			I	[13]