www.mystudybro.com

Mathematics M1

Examiner's use only

Team Leader's use only

1

2

3

4

5

6

7

8

Past Paper

This resource was created and owned by Pearson Edexcel

6677

Centre No.					Pape	r Refer	ence			Surname	Initial(s)
Candidate No.			6	6	7	7	/	0	1	Signature	

Paper Reference(s)

6677/01

Edexcel GCE

Mechanics M1

Advanced/Advanced Subsidiary

Monday 24 May 2010 – Afternoon

Time: 1 hour 30 minutes

Materials required for examination
Mathematical Formulae (Pink)Items included with question papers
Nil

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initials and signature. Check that you have the correct question paper.

Answer ALL the questions.

You must write your answer to each question in the space following the question.

Whenever a numerical value of g is required, take $g = 9.8 \text{ m s}^{-2}$.

When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information for Candidates

A booklet 'Mathematical Formulae and Statistical Tables' is provided.

Full marks may be obtained for answers to ALL questions.

The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2).

There are 8 questions in this question paper. The total mark for this paper is 75.

There are 28 pages in this question paper. Any blank pages are indicated.

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled. You should show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit.

This publication may be reproduced only in accordance with Edexcel Limited copyright policy.

©2010 Edexcel Limited

 $\stackrel{\text{Printer's Log. No.}}{N35390A}$

Turn over

Total

W850/R6677/57570 4/5/3

Mathen	natics M1 6677
= 6 s <i>P</i> is at the origin at time	Leave blank
(5)	

constant velocity $(-3\mathbf{i} + 2\mathbf{j}) \text{ m s}^{-1}$. At time $t = 6 \text{ s } P$ is at the $-4\mathbf{i} - 7\mathbf{j})$ m. Find the distance of P from the origin at time	point with position vector $(-41 - 2)$
(5)	

Summer 2010 Mechanics M1 6677 Mark Scheme

Question Number	Scheme	Marks	
Q1	$(-4\mathbf{i} - 7\mathbf{j}) = \mathbf{r} + 4(-3\mathbf{i} + 2\mathbf{j})$ $\mathbf{r} = (8\mathbf{i} - 15\mathbf{j})$ $ \mathbf{r} = \sqrt{8^2 + (-15)^2} = 17 \text{ m}$	M1 A1 A1 M1 A1 ft	[5]
Q2 (a)	$4u \xrightarrow{ku} \qquad ku$ $2u \xrightarrow{p} \qquad \frac{ku}{2}$ $4mu - 3mku = -2mu + 3mk \frac{u}{2}$ $k = \frac{4}{3}$	M1 A1 M1 A1cso	(4)
(b)	For P , $I = m (2u4u)$ = 6mu OR For Q , $I = 3m (\frac{ku}{2}ku)$	M1 A1 A1 (M1A1)	(3) [7]
Q3	(→) $100\cos 30 = F$ F = 0.5 R seen (↓) $mg + 100\cos 60 = R$ m = 13 kg or 12.6 kg	M1 A1 A1 (B1) M1 A1 DM1 A1	[7]

■ Past Paper

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Leave

2.	Particle P has mass m kg and particle Q has mass $3m$ kg. The particles are min opposite directions along a smooth horizontal plane when they collide dir Immediately before the collision P has speed $4u$ m s ⁻¹ and Q has speed ku m s ⁻¹ , whis a constant. As a result of the collision the direction of motion of each particle is revand the speed of each particle is halved.	ectly. nere <i>k</i>
	(a) Find the value of k .	(4)
	(b) Find, in terms of m and u , the magnitude of the impulse exerted on P by Q .	(3)

Summer 2010 Mechanics M1 6677 Mark Scheme

Question Number	Scheme	Marks	
Q1	$(-4\mathbf{i} - 7\mathbf{j}) = \mathbf{r} + 4(-3\mathbf{i} + 2\mathbf{j})$ $\mathbf{r} = (8\mathbf{i} - 15\mathbf{j})$ $ \mathbf{r} = \sqrt{8^2 + (-15)^2} = 17 \text{ m}$	M1 A1 A1 M1 A1 ft	[5]
Q2 (a)	$4u \xrightarrow{ku} \qquad ku$ $2u \xrightarrow{p} \qquad \frac{ku}{2}$ $4mu - 3mku = -2mu + 3mk \frac{u}{2}$ $k = \frac{4}{3}$	M1 A1 M1 A1cso	(4)
(b)	For P , $I = m (2u4u)$ = 6mu OR For Q , $I = 3m (\frac{ku}{2}ku)$	M1 A1 A1 (M1A1)	(3) [7]
Q3	(→) $100\cos 30 = F$ F = 0.5 R seen (↓) $mg + 100\cos 60 = R$ m = 13 kg or 12.6 kg	M1 A1 A1 (B1) M1 A1 DM1 A1	[7]

■ Past Paper

This resource was created and owned by Pearson Edexcel

6677

Leave blank

3.

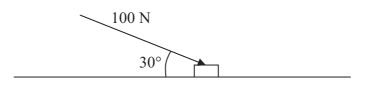


Figure 1

A small box is pushed along a floor. The floor is modelled as a rough horizontal plane and the box is modelled as a particle. The coefficient of friction between the box and the floor is $\frac{1}{2}$. The box is pushed by a force of magnitude 100 N which acts at an angle of 30° with the floor, as shown in Figure 1.

Given that the box moves with constant speed, find the mass of the box. **(7)**

Summer 2010 Mechanics M1 6677 Mark Scheme

Question Number	Scheme	Marks	
Q1	$(-4\mathbf{i} - 7\mathbf{j}) = \mathbf{r} + 4(-3\mathbf{i} + 2\mathbf{j})$ $\mathbf{r} = (8\mathbf{i} - 15\mathbf{j})$ $ \mathbf{r} = \sqrt{8^2 + (-15)^2} = 17 \text{ m}$	M1 A1 A1 M1 A1 ft	[5]
Q2 (a)	$4u \xrightarrow{ku} \qquad ku$ $2u \xrightarrow{p} \qquad \frac{ku}{2}$ $4mu - 3mku = -2mu + 3mk \frac{u}{2}$ $k = \frac{4}{3}$	M1 A1 M1 A1cso	(4)
(b)	For P , $I = m (2u4u)$ = 6mu OR For Q , $I = 3m (\frac{ku}{2}ku)$	M1 A1 A1 (M1A1)	(3) [7]
Q3	(→) $100\cos 30 = F$ F = 0.5 R seen (↓) $mg + 100\cos 60 = R$ m = 13 kg or 12.6 kg	M1 A1 A1 (B1) M1 A1 DM1 A1	[7]

■ Past Paper

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

6677

Leave

two supports at the points C and D , where $AC = 1$ m and $DB = 1$ m. Two children, Sophie and Tom, each of weight 500 N, stand on the beam with Sophie standing twice as far from the end B as Tom. The beam remains horizontal and in equilibrium and the magnitude of the reaction at D is three times the magnitude of the reaction at C . By modelling the beam as a uniform rod and the two children as particles, find how far Tom is standing from the end B .
(7)

Question Number	Scheme	Marks	
Q4	R 500 200 500 S $M(B)$, $500x + 500.2x + 200x3 = Rx5 + Sx1$ (or any valid moments equation) $(\downarrow) R + S = 500 + 500 + 200 = 1200$ (or a moments equation) solving for x ; $x = 1.2$ m	M1 A1 A1 M1 A1 M1 A1 cso	[7]
Q5 (a)	Shape (both) Cross Meet on t-axis Figures 25,20,T,25 For Q : $20\left(\frac{t+25}{2}\right) = 800$ $t = 55$	B1 B1 B1 B1 M1 A1	(4)
	For $P: 25\left(\frac{T+55}{2}\right) = 800$ solving for $T: T = 9$	M1 A1	(8) [12]

■ Past Paper

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

6677 Leave

5.	Two cars P and Q are moving in the same direction along the same straight horizontal road. Car P is moving with constant speed $25 \mathrm{ms^{-1}}$. At time $t = 0$, P overtakes Q which is moving with constant speed $20 \mathrm{ms^{-1}}$. From $t = T$ seconds, P decelerates uniformly, coming to rest at a point X which is $800 \mathrm{m}$ from the point where P overtook Q . From $t = 25 \mathrm{s}$, Q decelerates uniformly, coming to rest at the same point X at the same instant as P .	blank
	 (a) Sketch, on the same axes, the speed-time graphs of the two cars for the period from t = 0 to the time when they both come to rest at the point X. (4) 	
	(b) Find the value of <i>T</i> . (8)	

Question Number	Scheme	Marks	
Q4	R 500 200 500 S $M(B)$, $500x + 500.2x + 200x3 = Rx5 + Sx1$ (or any valid moments equation) $(\downarrow) R + S = 500 + 500 + 200 = 1200$ (or a moments equation) solving for x ; $x = 1.2$ m	M1 A1 A1 M1 A1 M1 A1 cso	[7]
Q5 (a)	Shape (both) Cross Meet on t-axis Figures 25,20,T,25 For Q : $20\left(\frac{t+25}{2}\right) = 800$ $t = 55$	B1 B1 B1 B1 M1 A1	(4)
	For $P: 25\left(\frac{T+55}{2}\right) = 800$ solving for $T: T = 9$	M1 A1	(8) [12]

■ Past Paper

	A ball is projected vertically upwards with a speed of 14.7 m s ⁻¹ from a point which 49 m above horizontal ground. Modelling the ball as a particle moving freely un gravity, find	der
	(a) the greatest height, above the ground, reached by the ball,	(4)
	(b) the speed with which the ball first strikes the ground,	(3)
	(c) the total time from when the ball is projected to when it first strikes the ground.	(3)
_		
_		
_		
_		

Question Number		Scheme	Marks	Marks	
Q6 ((a)	$(\uparrow)v^2 = u^2 + 2as$ $0 = 14.7^2 - 2x \ 9.8 \ x \ s$ s = 11.025 (or 11 or 11.0 or 11.03) m Height is 60 m or 60.0 m ft	M1A1 A1 A1ft	(4)	
ı	(b)	$(\downarrow)v^2 = u^2 + 2as$ $v^2 = (-14.7)^2 + 2x \ 9.8 \ x \ 49$ $v = 34.3 \ \text{or} \ 34 \ \text{m s}^{-1}$	M1 A1 A1	(3)	
	(c)	OR $(\downarrow)v = u + at$ $(\downarrow)s = ut + \frac{1}{2}at^2$ $49 = -14.7t + 4.9t^2$ $t = 5$ $t = 5$	M1 A1 A1	(3) [10]	
Q7 ((a)	$F = \frac{1}{3}R$ $(\uparrow) R\cos\alpha - F\sin\alpha = 0.4g$ $R = \frac{2}{3}g = 6.53 \text{ or } 6.5$	B1 M1 A1 M1 A1	(5)	
ı	(b)	$(\rightarrow)P - F\cos\alpha - R\sin\alpha = 0$ $P = \frac{26}{45}g = 5.66 \text{ or } 5.7$	M1 A2 M1 A1	(5) [10]	

Past Paper

This resource was created and owned by Pearson Edexcel

Leave

blank

7.

Figure 2

A particle of mass 0.4 kg is held at rest on a fixed rough plane by a horizontal force of magnitude P newtons. The force acts in the vertical plane containing the line of greatest slope of the inclined plane which passes through the particle. The plane is inclined to the horizontal at an angle α , where $\tan \alpha = \frac{3}{4}$, as shown in Figure 2.

The coefficient of friction between the particle and the plane is $\frac{1}{3}$.

Given that the particle is on the point of sliding up the plane, find

(a) the magnitude of the normal reaction between the particle and the plane,

(5)

(b) the value of P.

(5)

Question Number		Scheme	Marks	Marks	
Q6 ((a)	$(\uparrow)v^2 = u^2 + 2as$ $0 = 14.7^2 - 2x \ 9.8 \ x \ s$ s = 11.025 (or 11 or 11.0 or 11.03) m Height is 60 m or 60.0 m ft	M1A1 A1 A1ft	(4)	
ı	(b)	$(\downarrow)v^2 = u^2 + 2as$ $v^2 = (-14.7)^2 + 2x \ 9.8 \ x \ 49$ $v = 34.3 \ \text{or} \ 34 \ \text{m s}^{-1}$	M1 A1 A1	(3)	
	(c)	OR $(\downarrow)v = u + at$ $(\downarrow)s = ut + \frac{1}{2}at^2$ $49 = -14.7t + 4.9t^2$ $t = 5$ $t = 5$	M1 A1 A1	(3) [10]	
Q7 ((a)	$F = \frac{1}{3}R$ $(\uparrow) R\cos\alpha - F\sin\alpha = 0.4g$ $R = \frac{2}{3}g = 6.53 \text{ or } 6.5$	B1 M1 A1 M1 A1	(5)	
ı	(b)	$(\rightarrow)P - F\cos\alpha - R\sin\alpha = 0$ $P = \frac{26}{45}g = 5.66 \text{ or } 5.7$	M1 A2 M1 A1	(5) [10]	

Past Paper

This resource was created and owned by Pearson Edexcel

Leave blank

8.

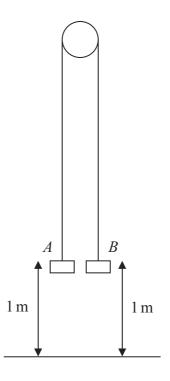


Figure 3

Two particles A and B have mass $0.4 \, \text{kg}$ and $0.3 \, \text{kg}$ respectively. The particles are attached to the ends of a light inextensible string. The string passes over a small smooth pulley which is fixed above a horizontal floor. Both particles are held, with the string taut, at a height of 1 m above the floor, as shown in Figure 3. The particles are released from rest and in the subsequent motion B does not reach the pulley.

(a) Find the tension in the string immediately after the particles are released.

(6)

(b) Find the acceleration of A immediately after the particles are released.

(2)

When the particles have been moving for 0.5 s, the string breaks.

(c) Find the further time that elapses until *B* hits the floor.

(9)

Question Number	Scheme	Marks	
Q8 (a) Mark together	$(\downarrow)0.4g - T = 0.4a$ $(\uparrow)T - 0.3g = 0.3a$ solving for T T = 3.36 or 3.4 or $12g/35$ (N)	M1 A1 M1 A1 DM1 A1	(6)
(b)	0.4g - 0.3g = 0.7a $a = 1.4 \text{ m s}^{-2}, g/7$	DM1 A1	(2)
(c)	$(\uparrow)v = u + at$ $v = 0.5 \times 1.4$ $= 0.7$ $(\uparrow)s = ut + \frac{1}{2}at^{2}$ $s = 0.5 \times 1.4 \times 0.5^{2}$ $= 0.175$	M1 A1 ft on <i>a</i> M1 A1 ft on <i>a</i>	
	$(\downarrow)s = ut + \frac{1}{2}at^{2}$ $1.175 = -0.7t + 4.9t^{2}$ $4.9t^{2} - 0.7t - 1.175 = 0$ $t = \frac{0.7 \pm \sqrt{0.7^{2} + 19.6 \times 1.175}}{9.8}$ $= 0.5663or$	DM1 A1 ft DM1 A1 cao	
	Ans 0.57 or 0.566 s		(9) 17]