www.mystudybro.com **Mathematics M1** Examiner's use only Team Leader's use only Question 1 2 3 4 5 6 7 Leave Past Paper This resource was created and owned by Pearson Edexcel 6677 | Centre
No. | | | | | Pape | r Refer | ence | | | Surname | Initial(s) | |------------------|--|--|---|---|------|---------|------|---|---|-----------|------------| | Candidate
No. | | | 6 | 6 | 7 | 7 | / | 0 | 1 | Signature | | Paper Reference(s) 6677/01 # **Edexcel GCE** # **Mechanics M1** # Advanced/Advanced Subsidiary Wednesday 18 May 2011 – Morning Time: 1 hour 30 minutes Materials required for examination
Mathematical Formulae (Pink)Items included with question papers
Nil Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation or symbolic differentiation/integration, or have retrievable mathematical formulae stored in them. ### **Instructions to Candidates** In the boxes above, write your centre number, candidate number, your surname, initials and signature. Check that you have the correct question paper. Answer ALL the questions. You must write your answer to each question in the space following the question. Whenever a numerical value of g is required, take $g = 9.8 \text{ m s}^{-2}$. When a calculator is used, the answer should be given to an appropriate degree of accuracy. ### **Information for Candidates** A booklet 'Mathematical Formulae and Statistical Tables' is provided. Full marks may be obtained for answers to ALL questions. The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2). There are 7 questions in this question paper. The total mark for this paper is 75. There are 24 pages in this question paper. Any blank pages are indicated. ### **Advice to Candidates** You must ensure that your answers to parts of questions are clearly labelled. You should show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit. Answers without working may not gain full credit This publication may be reproduced only in accordance with Edexcel Limited copyright policy. ©2011 Edexcel Limited. P38161RRA Turn over **Total** W850/R6677/57570 5/5/4/3/3/2/e2/5 ■ Past Paper **www.mystudybro.com**This resource was created and owned by Pearson Edexcel 6677 Leave | (a) Show that the speed of projection is 28 m s ⁻¹ . | | |--|-----| | | (3) | | (b) Find the times, in seconds, when the ball is 33.6 m above O. | (F) | | | (5) | Past Paper (Mark Scheme) ## June 2011 Mechanics M1 6677 Mark Scheme | wark scheme | | | | | |--------------------|---|-------------------------|--|--| | Question
Number | Scheme | Marks | | | | 1. (a) | $0^{2} = u^{2} - 2x9.8x40$ $u = 28 \text{ m s}^{-1} ** \text{ GIVEN ANSWER}$ | M1 A1
A1 (3) | | | | (b) | $33.6 = 28t - \frac{1}{2}9.8t^{2}$ $4.9t^{2} - 28t + 33.6 = 0$ $t = \frac{28 \pm \sqrt{28^{2} - 4x4.9x33.6}}{9.8}$ $= 4 \text{ s or } (1.7 \text{ s or } 1.71 \text{ s})$ | M1 A1 M1 A1 A1 (5) 8 | | | | 2. (a) | CLM: $3x3 - 2x2 = 3v + 2(v+1)$ $v_P = 0.6 \text{ m s}^{-1}; v_Q = 1.6 \text{ m s}^{-1}$ | M1 A1 M1A1 (A1 ft) (5) | | | | (b) | $3(v-3) OR 2(v+12) \\ = 7.2 \text{ Ns} $ = 7.2 Ns | M1 A1 ft
A1 (3)
8 | | | ■ Past Paper **www.mystudybro.com**This resource was created and owned by Pearson Edexcel 6677 Leave | 2. | Particle P has mass 3 kg and particle Q has mass 2 kg. The particles are moving in opposite directions on a smooth horizontal plane when they collide directly. Immediately before the collision, P has speed 3 m s ⁻¹ and Q has speed 2 m s ⁻¹ . Immediately after the collision, both particles move in the same direction and the difference in their speeds is 1 m s ⁻¹ . | |----|--| | | (a) Find the speed of each particle after the collision. (5) | | | | | | (b) Find the magnitude of the impulse exerted on P by Q . (3) | Past Paper (Mark Scheme) ## June 2011 Mechanics M1 6677 Mark Scheme | wark scheme | | | | | |--------------------|---|-------------------------|--|--| | Question
Number | Scheme | Marks | | | | 1. (a) | $0^{2} = u^{2} - 2x9.8x40$ $u = 28 \text{ m s}^{-1} ** \text{ GIVEN ANSWER}$ | M1 A1
A1 (3) | | | | (b) | $33.6 = 28t - \frac{1}{2}9.8t^{2}$ $4.9t^{2} - 28t + 33.6 = 0$ $t = \frac{28 \pm \sqrt{28^{2} - 4x4.9x33.6}}{9.8}$ $= 4 \text{ s or } (1.7 \text{ s or } 1.71 \text{ s})$ | M1 A1 M1 A1 A1 (5) 8 | | | | 2. (a) | CLM: $3x3 - 2x2 = 3v + 2(v+1)$ $v_P = 0.6 \text{ m s}^{-1}; v_Q = 1.6 \text{ m s}^{-1}$ | M1 A1 M1A1 (A1 ft) (5) | | | | (b) | $3(v-3) OR 2(v+12) \\ = 7.2 \text{ Ns} $ = 7.2 Ns | M1 A1 ft
A1 (3)
8 | | | Leave blank 3. Figure 1 A particle of weight W newtons is held in equilibrium on a rough inclined plane by a horizontal force of magnitude 4 N. The force acts in a vertical plane containing a line of greatest slope of the inclined plane. The plane is inclined to the horizontal at an angle α , where $\tan \alpha = \frac{3}{4}$, as shown in Figure 1. The coefficient of friction between the particle and the plane is $\frac{1}{2}$. Given that the particle is on the point of sliding down the plane, - (i) show that the magnitude of the normal reaction between the particle and the plane is 20 N, - (ii) find the value of W. | |
 | | |--|------|--| Past Paper (Mark Scheme) **www.mystudybro.com**This resource was created and owned by Pearson Edexcel | | advan | cing learning, changing liv | |--------------------|--|--| | Question
Number | Scheme | Marks | | 3. <u>OR</u> | $ \begin{array}{c} $ | M1 A1
M1 A1
B1
B1
M1 A1
A1
(9)
M1 A1
B1
B1
B1
M1 A1
A1 | | 4. (a) | 5
V
0 4 64 84 | B1 shape
B1 figs | | (b) | $(\frac{1}{2}x4x5) + 60 \times 5$ = 310 | M1 A1
A1 (3) | | (c) | $\frac{(5+V)}{2} \times 20 = (400-310)$ $V = 4$ | M1 A2 ft DM1 A1 (5) | | (d) | $\frac{5-4}{20} = 0.05 \text{ ms}^{-2}$ | M1 A1 (2) | | TE Mochanics M1 (| 6677) Juno 2011 | | ### www.mystudybro.com **Mathematics M1** Past Paper This resource was created and owned by Pearson Edexcel Leave 6677 - 4. A girl runs a 400 m race in a time of 84 s. In a model of this race, it is assumed that, starting from rest, she moves with constant acceleration for 4 s, reaching a speed of 5 m s⁻¹. She maintains this speed for 60 s and then moves with constant deceleration for 20 s, crossing the finishing line with a speed of V m s⁻¹. - (a) Sketch, in the space below, a speed-time graph for the motion of the girl during the whole race. **(2)** (b) Find the distance run by the girl in the first 64 s of the race. **(3)** (c) Find the value of V. **(5)** (d) Find the deceleration of the girl in the final 20 s of her race. **(2)** Past Paper (Mark Scheme) **www.mystudybro.com**This resource was created and owned by Pearson Edexcel | | advan | cing learning, changing liv | |--------------------|--|--| | Question
Number | Scheme | Marks | | 3. <u>OR</u> | $ \begin{array}{c} $ | M1 A1
M1 A1
B1
B1
M1 A1
A1
(9)
M1 A1
B1
B1
B1
M1 A1
A1 | | 4. (a) | 5
V
0 4 64 84 | B1 shape
B1 figs | | (b) | $(\frac{1}{2}x4x5) + 60 \times 5$ = 310 | M1 A1
A1 (3) | | (c) | $\frac{(5+V)}{2} \times 20 = (400-310)$ $V = 4$ | M1 A2 ft DM1 A1 (5) | | (d) | $\frac{5-4}{20} = 0.05 \text{ ms}^{-2}$ | M1 A1 (2) | | TE Mochanics M1 (| 6677) Juno 2011 | | **www.mystudybro.com**This resource was created and owned by Pearson Edexcel ■ Past Paper | R | a | 7 | 7 | |---|---|---|---| | | | | | Leave | 5. | A plank PQR , of length 8 m and mass 20 kg, is in equilibrium in a horizontal position on two supports at P and Q , where $PQ = 6$ m. | blank | |----|---|-------| | | A child of mass 40 kg stands on the plank at a distance of 2 m from P and a block of mass M kg is placed on the plank at the end R . The plank remains horizontal and in equilibrium. The force exerted on the plank by the support at P is equal to the force exerted on the plank by the support at Q . | | | | By modelling the plank as a uniform rod, and the child and the block as particles, | | | | (a) (i) find the magnitude of the force exerted on the plank by the support at P , | | | | (ii) find the value of M . (10) | | | | (b) State how, in your calculations, you have used the fact that the child and the block can | | | | be modelled as particles. (1) | **www.mystudybro.com**This resource was created and owned by Pearson Edexcel **Mathematics M1** Past Paper (Mark Scheme) | Question
Number | Scheme | Marks | | |--------------------|--|---|--------------------------| | 5. (a) | $P \uparrow \qquad \qquad 2 \text{ m} \qquad 2 \text{ m} \qquad Q \text{ m} \qquad Q \text{ m} \qquad R \\ X \qquad 40 \text{g} \qquad 20 \text{g} \qquad X \qquad \text{Mg}$ | | | | (i) | EITHER $M(R)$, $8X + 2X = 40g \times 6 + 20g \times 4$
solving for X , $X = 32g = 314$ or 310 N | M1 A2
M1 A1 | | | (ii) | (\uparrow) $X + X = 40g + 20g + Mg$ (or another moments equation) | M1 A2 | | | (i) | solving for M , $M = 4$
OR $M(P)$, $6X = 40g \times 2 + 20g \times 4 + Mg \times 8$
solving for X , $X = 32g = 314$ or 310 N
(\uparrow) $X + X = 40g + 20g + Mg$ (or another moments | M1 A1
M1 A2
M1 A1 | | | (ii) | equation) solving for M , $M = 4$ | M1 A2
M1 A1 | (10) | | (b) | Masses concentrated at a point or weights act at a point | B1 | (10)
(1)
11 | | 6. (a) | $R = 0.3g \cos \alpha$
= 0.24g = 2.35 (3sf)=2.4 (2sf) | M1
A1 | | | (b) | $mg - T = 1.4m$ $T - 0.3g \sin \alpha - F = 0.3 \times 1.4$ $F = 0.5R$ Eliminating R and T $m = 0.4$ | M1 A1
M1 A2
M1
DM 1
A1 | (2) | | (c) | $v = 1.4 \times 0.5$ $-0.3g \sin \alpha - F = 0.3a$ $a = -9.8$ $0 = 0.7 - 9.8t$ $t = 0.071 \text{ s or } 0.0714 \text{ s } (1/14 \text{ A0})$ | B1
M1 A1
A1
M1
A1 | (8)
(6)
16 | Leave blank **6.** Figure 2 Two particles P and Q have masses 0.3 kg and m kg respectively. The particles are attached to the ends of a light inextensible string. The string passes over a small smooth pulley which is fixed at the top of a fixed rough plane. The plane is inclined to the horizontal at an angle α , where $\tan \alpha = \frac{3}{4}$. The coefficient of friction between P and the plane is $\frac{1}{2}$. The string lies in a vertical plane through a line of greatest slope of the inclined plane. The particle P is held at rest on the inclined plane and the particle Q hangs freely below the pulley with the string taut, as shown in Figure 2. The system is released from rest and Q accelerates vertically downwards at 1.4 m s⁻². Find (a) the magnitude of the normal reaction of the inclined plane on P, **(2)** (b) the value of m. **(8)** When the particles have been moving for 0.5 s, the string breaks. Assuming that P does not reach the pulley, (c) find the further time that elapses until *P* comes to instantaneous rest. **(6)** **www.mystudybro.com**This resource was created and owned by Pearson Edexcel **Mathematics M1** Past Paper (Mark Scheme) | Question
Number | Scheme | Marks | <u> </u> | |--------------------|--|---|--------------------------| | 5. (a) | $P \xrightarrow{2 \text{ m}} 2 \text{ m} \xrightarrow{2 \text{ m}} Q \xrightarrow{2 \text{ m}} R$ $X \xrightarrow{40g} 20g \xrightarrow{X} Mg$ | | | | (i) | EITHER $M(R)$, $8X + 2X = 40g \times 6 + 20g \times 4$
solving for X , $X = 32g = 314$ or 310 N | M1 A2
M1 A1 | | | (ii) | (\uparrow) $X + X = 40g + 20g + Mg$ (or another moments equation) | M1 A2 | | | (i) | solving for M , $M = 4$
OR $M(P)$, $6X = 40g \times 2 + 20g \times 4 + Mg \times 8$
solving for X , $X = 32g = 314$ or 310 N
$(\uparrow) X + X = 40g + 20g + Mg$ (or another moments | M1 A1
M1 A2
M1 A1 | | | (ii) | equation) solving for M , $M = 4$ | M1 A2
M1 A1 | (10) | | (b) | Masses concentrated at a point or weights act at a point | B1 | (10)
(1)
11 | | 6. (a) | $R = 0.3g \cos \alpha$
= 0.24g = 2.35 (3sf)=2.4 (2sf) | M1
A1 | | | (b) | $mg - T = 1.4m$ $T - 0.3g \sin \alpha - F = 0.3 \times 1.4$ $F = 0.5R$ Eliminating R and T $m = 0.4$ | M1 A1
M1 A2
M1
DM 1
A1 | (2) | | (c) | $v = 1.4 \times 0.5$ $-0.3g \sin \alpha - F = 0.3a$ $a = -9.8$ $0 = 0.7 - 9.8t$ $t = 0.071 \text{ s or } 0.0714 \text{ s } (1/14 \text{ A0})$ | B1
M1 A1
A1
M1
A1 | (8)
(6)
16 | **www.mystudybro.com**This resource was created and owned by Pearson Edexcel ■ Past Paper 6677 Leave | [In this question i and j are unit vectors due east and due north respectively. Position vectors are given relative to a fixed origin O.] Two ships P and Q are moving with constant velocities. Ship P moves with velocity (2i-3j) km h ⁻¹ and ship Q moves with velocity (3i+4j) km h ⁻¹ . (a) Find, to the nearest degree, the bearing on which Q is moving. (2) At 2 pm, ship P is at the point with position vector (i+j) km and ship Q is at the point with position vector (-2j) km. At time t hours after 2 pm, the position vector of P is p km and the position vector of Q is q km. (b) Write down expressions, in terms of t, for (i) p, (ii) q, (iii) PQ. (5) (c) Find the time when (i) Q is due north of P, (ii) Q is north-west of P. | | | |--|-----|---| | (2i-3j) km h⁻¹ and ship Q moves with velocity (3i+4j) km h⁻¹. (a) Find, to the nearest degree, the bearing on which Q is moving. (2) At 2 pm, ship P is at the point with position vector (i+j) km and ship Q is at the point with position vector (-2j) km. At time t hours after 2 pm, the position vector of P is p km and the position vector of Q is q km. (b) Write down expressions, in terms of t, for (i) p, (ii) q, (iii) PQ. (5) (c) Find the time when (i) Q is due north of P, (ii) Q is north-west of P. | - | 1 , | | At 2 pm, ship <i>P</i> is at the point with position vector (i + j) km and ship <i>Q</i> is at the point with position vector (-2 j) km. At time <i>t</i> hours after 2 pm, the position vector of <i>P</i> is p km and the position vector of <i>Q</i> is q km. (b) Write down expressions, in terms of <i>t</i> , for (i) p , (ii) q , (iii) \overrightarrow{PQ} . (5) (c) Find the time when (i) <i>Q</i> is due north of <i>P</i> , (ii) <i>Q</i> is north-west of <i>P</i> . | | | | with position vector (-2j) km. At time t hours after 2 pm, the position vector of P is p km and the position vector of Q is q km. (b) Write down expressions, in terms of t, for (i) p, (ii) q, (iii) PQ. (c) Find the time when (i) Q is due north of P, (ii) Q is north-west of P. | (a) | | | Q is \mathbf{q} km. (b) Write down expressions, in terms of t , for (i) \mathbf{p} , (ii) \mathbf{q} , (iii) \overrightarrow{PQ} . (c) Find the time when (i) Q is due north of P , (ii) Q is north-west of P . | | | | (i) \mathbf{p} , (ii) \mathbf{q} , (iii) \overrightarrow{PQ} . (c) Find the time when (i) Q is due north of P , (ii) Q is north-west of P . | | | | (ii) \overrightarrow{PQ} . (iii) \overrightarrow{PQ} . (c) Find the time when (i) Q is due north of P , (ii) Q is north-west of P . | (b) | Write down expressions, in terms of t , for | | (iii) \overrightarrow{PQ} . (c) Find the time when (i) Q is due north of P , (ii) Q is north-west of P . | | (i) p , | | (c) Find the time when (i) Q is due north of P, (ii) Q is north-west of P. | | (ii) q, | | (i) Q is due north of P,(ii) Q is north-west of P. | | | | (ii) Q is north-west of P . | (c) | Find the time when | | · · · - | | (i) Q is due north of P , | 22 Past Paper (Mark Scheme) **www.mystudybro.com**This resource was created and owned by Pearson Edexcel 6677 | edexcel | |------------------------------------| | advancing learning, changing lives | | | | advancing learning, chang | ing liv | |-----------------------------|--|---------------------------|------------------| | Question
Number | Scheme | Marks | | | 7. (a) | $\tan \theta = \frac{3}{4}$; bearing is 37° (nearest degree) | M1; A1 | (2) | | (b)
(i)
(ii)
(iii) | $\mathbf{p} = (\mathbf{i} + \mathbf{j}) + t(2\mathbf{i} - 3\mathbf{j})$ $\mathbf{q} = (-2\mathbf{j}) + t(3\mathbf{i} + 4\mathbf{j})$ $\mathbf{PQ} = \mathbf{q} - \mathbf{p} = (-\mathbf{i} - 3\mathbf{j}) + t(\mathbf{i} + 7\mathbf{j})$ | M1 A1
A1
M1 A1 | (2) | | (c)
(i)
(ii) | -1+t=0
t=1 or 3pm
-1+t=-(-3+7t) | M1
A1
M1 | (5) | | (11) | $t = \frac{1}{2} \text{or} 2.30 \text{ pm}$ | A1 | (4)
11 |