Summer	2014R
Past Paper	

Summer 2014Rwww.mystudybro.comMaPast PaperThis resource was created and owned by Pearson Edexcel						Mathe	athematics M1 6677					
Centre No.		Paper Reference Surname							Initia	l(s)		
Candidate No.		6 6	7	7	/	0	1	R	Signature		•	
	Paper Reference(s) 6677/01R									Exan	niner's use	e only
	Edexc	el C	GC	CE	1					Team I	Leader's u	se only
	Mechani	ics M	[1									
	Advanced Friday 6 Ju							lia	ſy		Question Number	Leave Blank
	Time: 1 ho						011				1	
	Time. Tho	ui 30	11111	iute	5						2	
											3	
	Materials required	l for avom	inatia	n	Itoma	inclu	udod i	with	question papers		4	
	Mathematical Form				Nil		lucu	with	<u>Auestion papers</u>		5	
	Candidates may us										6	
	Council for Qualif algebra manipulat retrievable mather	ion or syn	ıbolic	differ	entia	tion/i	ntegr			c	7	
Instructions to Car												
In the boxes above, w Check that you have a Answer ALL the quest	he correct question tions.	paper.						-	C C	ure.		
You must write your a Whenever a numerica significant figures or	l value of g is requitive significant fig	ired, take gures.	g = 9	.8 m	s ⁻² an	d giv	ve you	ur ans	swer to either tw	70		
When a calculator is			ven te	o an a	appro	priate	e degi	ree of	f accuracy.			
Information for Ca	indidates											

A booklet 'Mathematical Formulae and Statistical Tables' is provided. Full marks may be obtained for answers to ALL questions. The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2). There are 7 questions in this question paper. The total mark for this paper is 75. There are 28 pages in this question paper. Any blank pages are indicated.

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled. You should show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit.

This publication may be reproduced only in accordance with Pearson Education Ltd copyright policy. ©2014 Pearson Education Ltd.

Total

Turn over

Past Paper

1.

Question Number	Scheme	Marks
1(a)	Resolving horizontally: $5 = T \cos 65^{\circ}$	M1A1
1 (<i>a</i>)	T = 12, 11.8, or better(N)	Al
	1 - 12, 11.0, 01 better(10)	(3)
		(3)
(b)	Resolving vertically: $W = T \cos 25^{\circ}$	M1A1
()	$=11.8\cos 25^\circ = 11, 10.7 \text{ or better (N)}$	Al
		(3)
		[6]
	Notes for Question 1	[-]
Question 1(
	resolving horizontally with correct no. of terms and T term resolved.	
	a correct equation in T only.	
	or 12 (N) or 11.8 (N) or better.	
	1 is for a <i>complete method</i> to find the tension so where two resolution each and the tension of tension	uations, neither
	re used, the usual criteria for an M mark must be applied to <i>both</i> equation	1 ·
	orrect equation in <i>T</i> only (i.e. <i>W</i> eliminated correctly)	
Alternative	S:	
Lami's Theo	brem: $\frac{T}{\sin 90^{\circ}} = \frac{5}{\sin 155^{\circ}}$ (same equation as \rightarrow resolution) M1A1	
Question 1(
	resolving vertically with correct no. of terms and T (does not need to be	substituted)
term resolve	č	substituted)
	a correct equation in T only.	
	for 11 (N), 10.7 (N) or better.	
Alternative		
	Forces: $W = 5\tan 65^{\circ}$ M1A1	
	T = W	
Lami's Theo	prem: $\frac{T}{\sin 90^{\circ}} = \frac{W}{\sin 115^{\circ}} M1A1$	
Or Resolution equation.	on in another direction e.g. along the string M1 (usual criteria) A1 for a	a correct

Summe		Mathematics M1
Past Paper	This resource was created and owned by Pearson Ec	dexcel 6677
	Two forces $(4\mathbf{i} - 2\mathbf{j})$ N and $(2\mathbf{i} + q\mathbf{j})$ N act on a particle <i>P</i> of mass 1.3 these two forces is parallel to the vector $(2\mathbf{i} + \mathbf{j})$.	blank
	(a) Find the value of q.	(4)
	At time $t = 0$, <i>P</i> is moving with velocity $(-2\mathbf{i} + 4\mathbf{j})$ m s ⁻¹ .	
	(b) Find the speed of P at time $t = 2$ seconds.	
		(6)

Question	Scheme	Marks
Number		
2 (a)	$(4\mathbf{i} - 2\mathbf{j}) + (2\mathbf{i} + q\mathbf{j}) = (6\mathbf{i} + (q - 2)\mathbf{j})$	M1A1
	$6 = 2(q-2) \qquad \text{ratio } 2:1$	DM 1
	q = 5	A1
		(4)
(b)	6i + 3j = 1.5a	M1
	$\mathbf{a} = (4\mathbf{i} + 2\mathbf{j}) \text{ m s}^{-2}$	A1
	v = u + at = (-2i + 4j) + 2(4i + 2j)	M1
	$= 6\mathbf{i} + 8\mathbf{j}$	A1 ft
	speed = $\sqrt{6^2 + 8^2}$	M 1
	$= 10 \text{ m s}^{-1}$	A1 (6)
		[10]
	Notes for Question 2	
Question 2(a		
	$(4\mathbf{i} - 2\mathbf{j}) + (2\mathbf{i} + q\mathbf{j})$	
First A1 for ($6\mathbf{i} + (q-2)\mathbf{j}$ (seen or implied)	
Second M1,	dependent on first M1, for using 'parallel to $(2i + j)$ ' to obtain an equati	on in <i>q only</i> .
Second A1 fo	or $q = 5$	
Question 2(h		
	their resultant force $= 1.5a$	
First A1 for a	0	
	for $(-2\mathbf{i} + 4\mathbf{j}) + 2\mathbf{x}$ (their a) (M0 if force is used instead of a)	
	for their velocity at $t = 2$	
	finding the magnitude of <u>their velocity at $t = 2$</u>	
Third A1 for	10 (ms ⁻¹)	
N.B. In (b), if	they use scalars throughout, M0A0M0A0M0A0	

Mathematics M1 6677

Pape	This resource was created and owned by Pearson Edexcel	6677
		Leave blank
3.	A car starts from rest and moves with constant acceleration along a straight horizontal road. The car reaches a speed of $V \text{ m s}^{-1}$ in 20 seconds. It moves at constant speed $V \text{ m s}^{-1}$	
	for the next 30 seconds, then moves with constant deceleration $\frac{1}{2}$ m s ⁻² until it has speed	
	8 m s ⁻¹ . It moves at speed 8 m s ⁻¹ for the next 15 seconds and then moves with constant	
	deceleration $\frac{1}{3}$ m s ⁻² until it comes to rest.	
	(a) Sketch, in the space below, a speed-time graph for this journey.	
	(3)	
	In the first 20 seconds of this journey the car travels 140 m.	
	Find	
	(b) the value of V,	
	(2)	
	(c) the total time for this journey,	
	(4)	
	(d) the total distance travelled by the car.	
	(4)	

Question Number **3(a)**

(b)

(c)

(**d**)

Scheme	Marks
v	$\begin{array}{c} B1\\ 0 < t < 50 \end{array}$
v	B1 50 < <i>t</i>
8 140 m	B1 (V,8,15, 20,30)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(3)
Use area under graph or <i>suvat</i> to form an equation in V only. $140 = \frac{1}{2} \times 20 \times V$	M1
V = 14	A1 (2)
$8 = V - \frac{1}{2}t_1 \text{ (and /or } 0 = 8 - \frac{1}{3}t_2 \text{)}$	M1
$t_1 = 12$, (and/or $t_2 = 24$)	A1
Total time = $20 + 30 + t_1 + 15 + t_2 = 101$ (seconds)	DM 1 A1 (4)
Total distance = $140 + 30V + \frac{V+8}{2}t_1 + 15 \times 8 + \frac{1}{2} \times 8 \times t_2$	M1A2 ft
$= 140 + 30 \times 14 + 11 \times 12 + 15 \times 8 + 24 \times 4$	A1
=908 (m)	A1

Notes for Ouestion 3

Question 3(a)

First B1 for shape of graph for $0 \le t \le 50$ Second B1 for shape of graph for t > 50Third B1 for V, 8, 15, 20, 30 appropriately used

Question 3(b)

M1 for use of area under graph (must have (1/2)) or *suvat* to obtain an equation in V only. A1 for V = 14

Question 3(c)

First M1 for use of either $8 = V - \frac{1}{2} t_1$ or $0 = 8 - \frac{1}{3} t_2$ First A1 for either $t_1 = 12$ or $t_2 = 24$ Second M1, dependent on the first M1, for $20 + 30 + t_1 + 15 + t_2$ (must include all 5 times) Second A1 for 101 (s)

Question 3(d)

First M1 for an expression for the total area (distance) including all parts of the motion. Where a triangle or trapezium is used , a '1/2' must be seen. Second A2 ft on their V, t_1 and t_2 , -1 each error. Fourth A1 for 908 (m).

4 [13]

Summer 2014R www.mystudybro.com **Mathematics M1** This resource was created and owned by Pearson Edexcel Past Paper 6677 Leave blank At time t = 0, a particle is projected vertically upwards with speed u from a point A. The 4. particle moves freely under gravity. At time T the particle is at its maximum height Habove A. (a) Find *T* in terms of *u* and *g*. (2) (b) Show that $H = \frac{u^2}{2g}$ (2) The point A is at a height 3H above the ground. (c) Find, in terms of T, the total time from the instant of projection to the instant when the particle hits the ground. (4)

Question Number	Scheme	Marks
4 (a)	Max ht $v = 0$. $v = u - gt \Longrightarrow T = \frac{u}{g}$	M1A1 (2)
(b)	$\frac{g}{\text{Max ht } H = ut + \frac{1}{2}at^2 = \frac{u^2}{g} - \frac{u^2}{2g} = \frac{u^2}{2g}} $ * Given answer* Or use of $v^2 = u^2 + 2as$	M1A1 (2)
(c)	Or use of $v^2 = u^2 + 2as$ $-3 \times \frac{u^2}{2g} = ut - \frac{1}{2}gt^2$	M1
	$-3u^{2} = 2ugt - g^{2}t^{2}$ $g^{2}t^{2} - 2ugt - 3u^{2} = 0, \qquad gt = \frac{2u \pm \sqrt{4u^{2} + 12u^{2}}}{2}$	DM 1 A1
	$t = \frac{3u}{g} = 3T$	A1 (4)
(c) alt	$-4H = -\frac{1}{2}gt^2$	M1
	Total time = $T + \sqrt{\frac{8H}{g}} = T + \sqrt{\frac{8u^2}{2g^2}}$	DM 1A1 A1
	=T+2T=3T	(4) [8]
	Notes for Question 4	[0]
an incorrect Allow use of e.g. in (a), us Question 4 (ion, condone sign errors in a <i>suvat</i> equation for the M mark, but a missing term is M0. An incorrect <i>suvat</i> formula is M0 f symmetry of motion. sing $v = u + at$, either $0 = u - gT$ or $u = 0 + gT$	erm is M0 or
A1 for $T = u$ Question 4(M1 for use c	/g correctly obtained.	

Question 4(c) Watch out for t/T confusion (N.B. if only T's used, M0DM0) First M1 for a complete method to find the *total* time in terms of u, g, H or T:either: $3H = -ut + \frac{1}{2}gt^2$ or: $4H = \frac{1}{2}gt^2$ and t + Tor: $v^2 = u^2 + 6gH$ and v = -u + gt, with v eliminated Second M1, **dependent on first M1**, for producing an expression, in terms of u, g, H or T, for the total time, by solving a quadratic First A1 for any correct expression for the total time in terms of u, g, H or T. Second A1 for 3T cso

16

Question Number	Scheme	Marks
5a	3mg - T = 3ma	M1A1
	T - 2mg = 2ma	M1A1
	$T = 2mg + 2\left(mg - \frac{T}{3}\right)$	DM 1
	$T = \frac{12}{5}mg$ *Given Answer*	A1 (6)
b	$a = \frac{g}{5}$	B1
	At time of impact $v^2 = u^2 + 2as = 2 \times \frac{g}{5} \times 1.5 = 0.6g$	M1A1
	Vertical motion under gravity $0 = 0.6g - 2gs$ s = 0.3 (m)	M1
	Total distance $2 \times 0.3 = 0.6$ (m)	DM 1A1 (6)
с	Impulse = 3m(v-u) = -3mu	M1
	Magnitude = $3m\sqrt{0.6g} = 3.6$ (Ns) (3.64)	A1 (2)
		(2) [14]

Notes for Question 5 Question 5(a) First M1 for resolving vertically (up or down) for B, with correct no. of terms etc (allow if they omit *m* but have the 3) First A1 for a correct equation. Second M1 for resolving vertically (up or down) for A, with correct no. of terms etc (allow if they omit *m* but have the 2) Second A1 for a correct equation Third M1, dependent on the first two M marks, for eliminating a Third A1 for T = 12mg/5 given answer **N.B.** Either equation above can be replaced by the whole system equation M1A1 for 3mg - 2mg = 5ma; any error loses both marks. **N.B.** If *m* has been omitted in (a), which has led to a dimensionally incorrect value of *a*, can score max B0M1A0M1M1A0 in (b) and M1A0 in (c). **Question 5(b)** B1 for a = g/5 found (possibly in part (a)) and used here. First M1 for using suvat with their a from part (a), to find the speed v (or v^2) of B at impact First A1 for $\sqrt{(0.6g)}$ oe, 2.4 or better (may be implied) found correctly. Second M1 for using suvat with $a = \pm g$, to obtain an equation in s only, using their v (or v^2) with *final velocity* = 0Third M1, dependent on second M1, for doubling their s value Second A1 for 0.6 (m) **Ouestion 5(c)** M1 for $\pm 3m x$ (their v) or $\pm 1.5 x$ (their v) or $\pm m x$ (their v) or $\pm 0.5 x$ (their v) **M0** if 3*m* missing or extra g A1 for 3.6 or 3.64 (Ns)

Question Number	Scheme	Marks
6a	Resolving vertically: $T + 2T(=3T) = W$	M1A1
	Moments about B: $2 \times 2T = (d-1)W$	M1A1
	Substitute and solve for d : $2 \times 2T = (d-1)3T$	D M1
	$d = \frac{7}{3} (\mathrm{m})$	A1 (6)
6b	Moments about C: $(T_B \times 2) + (kW \times 1) = W \times \frac{2}{3}$	M1A1
	$T_{B} = W \frac{\left(2 - 3k\right)}{6}$ or equivalent	A1 (3)
бс	solving $T_B \ge 0$ or $T_B > 0$ for k .	M1
UC	$0 < k \le 2/3$ or $0 < k < 2/3$ only	A1 (2)
		[11]

Notes for Question 6 **Question 6(a) N.B.** If Wg is used, mark as a misread. First M1 for an equation in W and T and possibly d (either resolve vertically or moments about any point other than the centre of mass of the rod), with usual rules. First A1 for a correct equation. Second M1 for an equation in W and T and possibly d (either resolve vertically or moments about any point other than the centre of mass of the rod), with usual rules. Second A1 for a correct equation. **N.B.** The above 4 marks can be scored if their *d* is measured from a different point Third M1, dependent on first and second M marks, for solving for dThird A1 for d = 7/3, 2.3 (m) or better **N.B.** Alternative If a single equation is used (see below) by taking moments about the centre of mass of the rod, 2T(3)-d = T(d-1), this scores M2A2 (-1 each error) Third M1, dependent on first and second M marks, for solving for d Third A1 for d = 7/3**Question 6(b)** First M1 for producing an equation in T_B and W only, either by taking moments about C, or using two equations and eliminating First A1 for a correct equation Second A1 for W(2-3k)/6 oe. **M0** if they use any information about the tension(s) from part (a). N.B. **Question 6(c)** M1 for solving $T_B \ge 0$ or $T_B > 0$ for k. A1 for $0 < k \le 2/3$ or 0 < k < 2/3 only. N.B.

 $T = 0 \Longrightarrow k = 2/3$ then answer is M0.

If they also solve $T_C \ge 0$ or $T_C > 0$, can still score M1 and possibly A1.

P 4 3 1 7 0 A 0 2 4 2 8

Question Number	Scheme	Marks	
7a	Perpendicular to the slope: $R = 2.7 g \cos 40 + 15 \cos 40$ = 31.8 (N) or 32 (N)	M1A2 A1	(4)
7b	Parallel to the slope: $F = 2.7g \sin 40 - 15\cos 50$ ($F = 7.366$)	M1A2	()
76	Use of $F = \mu R$	M1	
	$\mu = \frac{2.7g\sin 40 - 15\cos 50}{R} = 0.23 \text{ or } 0.232$	A1	(5)
7c	Component of wt parallel to slope = $2.7g \sin 40^\circ$ (= 17.0)	B1	
	$F_{\text{max}} = 0.232 \times 2.7 \times g \times \cos 40^\circ = 4.7 \text{ (N)}$	M1A1	
	17.0 > 4.70 so the particle moves	A1 ((1)
		[13]	(4)

<u>N.B.</u> Only penalise over- or under-accuracy after using g = 9.8, (or use of g = 9.81), once in whole question.

Question 7(a)

First M1 for resolving perpendicular to the slope, with correct no. of terms, and both the 2.7g and 15 terms resolved. First A2 for a correct equation; -1 each error.

Third A1 for 32 (N) or 31.8 (N)

Question 7(b)

First M1 for resolving parallel to the slope, with correct no. of terms, and both the 2.7g and 15 terms resolved.

First A2 for a correct equation; -1 each error. Second M1 for use of $F = \mu R$ Third A1 for 0.23 or 0.232

Question 7(c)

B1 for component of weight down the plane $2.7g\sin 40^{\circ}$ (17 or better) M1 for using their **NEW** *R* and μ to find max friction (M0 if they use *R* from (a)) First A1 for 4.7(or better) (should be 4.701242531) Second A1 for comparison and correct conclusion. **N.B. If first A mark is 0, the second A mark must also be 0.**