This resource was created and owned by Pearson Edexcel

WFM01

Write your name here Surname	Other na	mes
Pearson Edexcel International Advanced Level	Centre Number	Candidate Number
Further Pu	Ira	
Mathema Advanced/Advance	tics F1	
Mathema	tics F1 d Subsidiary	Paper Reference WFM01/01

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B). Coloured pencils and highlighter pens must not be used.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information

- The total mark for this paper is 75.
- The marks for each question are shown in brackets
 use this as a quide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

P 4 6 9 4 8 A 0 1 3 2

Turn over ▶

This resource was created and owned by Pearson Edexcel

WFM01

Leave blank

1. z = 3 + 2i, w = 1 - i

Find in the form a + bi, where a and b are real constants,

(a) zw

(2)

(b) $\frac{z}{w^*}$, showing clearly how you obtained your answer.

(3)

Given that

 $|z + k| = \sqrt{53}$, where k is a real constant

(c) find the possible values of k.

(4)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

WFM01

January 2016 WFM01 Further Pure Mathematics F1 Mark Scheme

Question Number		Scheme			Notes	Marks	
1. (a)	(3+2i)	(1-i) = 3-3i+2i+2		At least 3 correct terms		M1	
		= 5 - i		(Correct	cao t answer only scores both marks)	A1	(2)
(b)		$w^* = 1 + i$			Understanding that $w^* = 1 + i$	B1	(-)
		$\left\{\frac{z}{w^*} = \right\} \frac{3+2i}{1+i} \times \frac{1-i}{1-i}$]	Multiplies top and bottom by the conjugate of the denominator	M1	
	$\left\{=\frac{3-}{}\right\}$	$\left. \frac{3i+2i+2}{1+1} \right\} = \frac{5}{2} - \frac{1}{2}i$			$\frac{5}{2} - \frac{1}{2}i$ or $2.5 - 0.5i$	A1	
	(.	. —	C.,1	44.a.c. P.	and non-Dutherman d	N/1:	(3)
(c)	$\left\{ \left 3+2i\right \right. \right.$	$+ k \Big = \sqrt{53} \Longrightarrow \Big\} \left(3+k\right)^2 + 4 = 53$	Substi	tutes for	z and uses Pythagoras correctly.	M1;	
					Correct equation in any form	AI	
	($(3+k)^2 + 4 = 53 \Longrightarrow (3+k)^2 = 49 \Longrightarrow k$; =				
		or			dependent on	13.71	
	($(3+k)^2 + 4 = 53 \Rightarrow k^2 + 6k - 40 = 0$			the previous M mark Attempt to solve for k	dM1	
	($\Rightarrow (k-4)(k+10) = 0 \Rightarrow k =$			Thempt to solve for k		
		$\frac{3(k-1)(k+10)}{(k-1)(k+10)} \stackrel{3}{\longrightarrow} k$			Both $\{k = \}4, -10$	A1	
		(**) ., 10					(4)
							9
			Questio	n 1 Note	es		
1. (b)	Note	Alternative acceptable method:	$\left(\frac{z}{w^*}\right)\left($	$\left(\frac{w}{w}\right) = \frac{zv}{w}$	$\frac{w}{ x ^2} = \frac{5-i}{2} = \frac{5}{2} - \frac{1}{2}i$		
(b)	Note	Give A0 for writing down $\frac{5-i}{2}$ w	vithout r	eference	e to $\frac{5}{2} - \frac{1}{2}i$ or $2.5 - 0.5i$		*****
	Note	Give B0M0A0 for writing down $\frac{8}{2}$	$\frac{5}{2} - \frac{1}{2}i$ for	rom no v	working in part (b).		
	Note	Give B0M1A0 for $\frac{3+2i}{1-i} \times \frac{1+i}{1+i}$					
	Note	Simplifying a correct $\frac{5}{2} - \frac{1}{2}i$ in part (b) to a final answer of $5-i$ is A0					
(c)	Note	Give final A0 if a candidate reject	s one of	k = 4 or	k = -10		*****
(b)	ALT	$\frac{3+2i}{1+i} = a + bi$ B1 ;					
		\Rightarrow 3+2i = $(a+bi)(1+i) \Rightarrow$ 3 = a	-b, 2 =	$a+b \Rightarrow$	$a =, b =$ for M1 and $\frac{5}{2} - \frac{1}{2}$	i for A1	

Past Paper

This resource was created and owned by Pearson Edexcel

WFM01 Leave

blank

2.

$$f(x) = x^2 - \frac{3}{\sqrt{x}} - \frac{4}{3x^2}, \quad x > 0$$

(a) Show that the equation f(x) = 0 has a root α in the interval [1.6, 1.7]

(2)

(b) Taking 1.6 as a first approximation to α , apply the Newton-Raphson process once to f(x) to find a second approximation to α . Give your answer to 3 decimal places.

(5)

Mathematics F1 WFM01

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Past Paper (Mark Scheme)

Question Number		Scheme		Notes	Marks		
2.		$f(x) = x^2 - \frac{3}{\sqrt{x}} - \frac{4}{3x^2}$					
(a)	f(1.6) = -0.3325 f(1.7) = 0.1277		· · ·			Attempts to evaluate both $f(1.6)$ and $f(1.7)$ and either $f(1.6) = awrt -0.3$ or $f(1.7) = awrt 0.1$	M1
	•	tange (positive, negative) (are aloues) therefore (a root) α is $x = 1.6$ and $x = 1.7$	` ′	Both $f(1.6) = awrt -0.3$ and $f(1.7) = awrt 0.1$, sign change and conclusion.	A1 cso		
					(2)		
(b)	f'(<i>x</i>	$(x) = 2x + \frac{3}{2}x^{-\frac{3}{2}} + \frac{8}{3}x^{-3}$	$x^2 \to \pm A$	At least one of either $x \text{ or } -\frac{3}{\sqrt{x}} \to \pm Bx^{-\frac{3}{2}} \text{ or } -\frac{4}{3x^2} \to \pm Cx^{-3}$	M1		
		2 3		where <i>A</i> , <i>B</i> and <i>C</i> are non-zero constants. At least 2 differentiated terms are correct	Λ 1		
				Correct differentiation	A1 A1		
	$\left\{\alpha \approx 1.6 - \frac{f(1.6)}{f'(1.6)}\right\} \Rightarrow \alpha \approx 1.6 - \frac{-0.33254}{4.592200}$).332541 .592200	dependent on the previous M mark			
		$\left\{\alpha = 1.672414 \Rightarrow\right\} \alpha = 1.672$		dependent on all 4 previous marks 1.672 on their first iteration (Ignore any subsequent applications)	A1 cso cao		
			•	answer scores full marks in (b) g scores no marks in (b)			
		Correct answer wi	tii <u>iio</u> workiiig	g scores no marks in (b)	(5)		
					7		
			Quest	ion 2 Notes			
2. (a) (b)	A1 Note	Candidate needs to state both $f(1.6) = awrt -0.3$ and $f(1.7) = awrt 0.1$ along with a reason and conclusion. Reference to change of sign or $f(1.6) \times f(1.7) < 0$ or a diagram or < 0 and > 0 or one positive, one negative are sufficient reasons. There must be a (minimal, not incorrect) conclusion, eg. root is in between 1.6 and 1.7, hence root is in interval, QED and a square are all acceptable. Ignore the presence or absence of any reference to continuity. A minimal acceptable reason and conclusion is "change of sign, hence root". Incorrect differentiation followed by their estimate of α with no evidence of applying					
		the NR formula is final dM0A0.					
	Note If the answer is incorrect it must be clear that we must see evidence of both $f(1.6)$ are being used in the Newton-Raphson process. So that just $1.6 - \frac{f(1.6)}{f'(1.6)}$ with an incorrect it must be clear that we must see evidence of both $f(1.6)$ and $f(1.6)$ are being used in the Newton-Raphson process. So that just $f(1.6)$ with an incorrect it must be clear that we must see evidence of both $f(1.6)$ and $f(1.6)$ are being used in the Newton-Raphson process.						
		and no other evidence scores M0.					

WFM01

Leave blank

3. The quadratic equation

$$x^2 - 2x + 3 = 0$$

has roots α and β .

Without solving the equation,

- (a) (i) write down the value of $(\alpha + \beta)$ and the value of $\alpha\beta$
 - (ii) show that $\alpha^2 + \beta^2 = -2$
 - (iii) find the value of $\alpha^3 + \beta^3$

(5)

- (b) (i) show that $\alpha^4 + \beta^4 = (\alpha^2 + \beta^2)^2 2(\alpha\beta)^2$
 - (ii) find a quadratic equation which has roots

$$(\alpha^3 - \beta)$$
 and $(\beta^3 - \alpha)$

giving your answer in the form $px^2 + qx + r = 0$ where p, q and r are integers.

"	וי

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question Number		Scheme Notes		Marks		
3.		$x^2 - 2x + 3 = 0$				
(a) (i)		$\alpha + \beta = 2$, $\alpha\beta = 3$			Both $\alpha + \beta = 2$, $\alpha\beta = 3$	B1
(ii)	α^2	$+\beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = \dots$	U		f a correct identity for $\alpha^2 + \beta^2$ (May be implied by their work)	M1
		$=2^2-6=-2$ *		-2	2 from a correct solution only	A1 *
(iii)	or $=$	$(\alpha + \beta)^{3} - 3\alpha\beta(\alpha + \beta) = \dots$ $(\alpha + \beta)(\alpha^{2} + \beta^{2} - \alpha\beta) = \dots$	U		f a correct identity for $\alpha^3 + \beta^3$ (May be implied by their work)	M1
		3-3(3)(2) = -10 $2(-2-3) = -10$		-10) from a correct solution only	A1
		, ,				(5)
(b)(i)	$\left(\alpha^2 + \beta^2\right)^2$	$-2(\alpha\beta)^{2} = \alpha^{4} + 2(\alpha\beta)^{2} + \beta^{4} - 2(\alpha\beta)^{2}$	$(\alpha\beta)^2 = \alpha^4 + \beta^4$ Correct algebraic proof Correct working without using explicit roots leading to a correct sum.			B1 *
(ii)	$Sum = \alpha^3$	$+\beta^3 - (\alpha + \beta) = -10 - 2 = -12$				B1
	Product =	$(\alpha^3 - \beta)(\beta^3 - \alpha) = (\alpha\beta)^3 - (\alpha^4 + \beta^4) +$	- αβ		Attempts to expand giving at least one term	M1
		$= (\alpha\beta)^3 - ((\alpha^2 + \beta^2)^2 - 2(\alpha\beta)^2) +$	αβ			
		=27-(4-18)+3=44			Correct product	A1
	$\left\{x^2 - \operatorname{sum}\right\}$	$x + \text{product} = 0 \Longrightarrow \begin{cases} x^2 + 12x + 44 = 0 \end{cases}$)	1	Applying $x^2 - (\text{sum})x + \text{product}$ $x^2 + 12x + 44 = 0$	M1 A1
						(6) 11
		Que	estion 3 l	Note	s	
(a) (i)	1st A1	$\alpha + \beta = -2$, $\alpha\beta = 3 \Rightarrow \alpha^2 + \beta^2 =$				
(b) (ii)	1st A1	$\alpha + \beta = -2$, $\alpha\beta = 3 \Rightarrow (\alpha\beta)^3 - (\alpha\beta)^3$	$(x^4 + \beta^4) +$	- αβ	= 44 is first M1A1	
(a)	Note	Applying $1+\sqrt{2}i$, $1-\sqrt{2}i$ explicitly in part (a) will score B0M0A0M0A0				
(b)	Note	Applying $1+\sqrt{2}i$, $1-\sqrt{2}i$ explicitly in part (b) will score a maximum of B1B0M0A0M1A0				
(a)	Note	Finding $\alpha + \beta = 2$, $\alpha\beta = 3$ by writing				
		$\alpha^{2} + \beta^{2} = (\alpha + \beta)^{2} - 2\alpha\beta = 2^{2} - 6 = -$				
		scores B0M1A0M1A0 in part (a). Su	uch cand	idate	es will be able to score all marks	
(b)(ii)	Note	they use the method as detailed on the A correct method leading to a candid	e scheme ate statin	e in p	eart (b). = 1, $q = 12$, $r = 44$ without writing	ng a final
		answer of $x^2 + 12x + 44 = 0$ is final 1				

Mathematics F1

■ Past Paper

This resource was created and owned by Pearson Edexcel

WFM01

Leave blank

4.

$$\mathbf{A} = \begin{pmatrix} -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}$$

(a) Describe fully the single geometrical transformation represented by the matrix \mathbf{A} .

(3)

(b) Hence find the smallest positive integer value of n for which

$$\mathbf{A}^n = \mathbf{I}$$

where I is the 2×2 identity matrix.

(1)

The transformation represented by the matrix $\bf A$ followed by the transformation represented by the matrix $\bf B$ is equivalent to the transformation represented by the matrix $\bf C$.

Given that $\mathbf{C} = \begin{pmatrix} 2 & 4 \\ -3 & -5 \end{pmatrix}$,

(c) find the matrix **B**.

(4)

DO NOT WHITE IN THIS A

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question Number		Scheme		Notes	Marks	
4. (a)	Rotation			Rotation	B1	
	225 degrees	(anticlockwise)		225 degrees or $\frac{5\pi}{4}$ (anticlockwise) or 135 degrees clockwise	B1 o.e.	
	about (0, 0)	about (0, 0) This mark is dependent on at least one of the previous B marks being awarded. About (0, 0) or about O or about the origin		dB1		
	Note: Give	2 nd B0 for 225 degrees clock				(3)
(b)		$\{n=\}$ 8		8	B1 cao	(1)
(c) Way 1	$\mathbf{A}^{-1} = \begin{pmatrix} & & & \\ & & & \end{pmatrix}$	$\begin{pmatrix} -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \text{ or } \begin{pmatrix} -\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \end{pmatrix}$	$\begin{pmatrix} \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} \end{pmatrix}$	Correct matrix	B1	(1)
	$\left\{ \mathbf{B} = \mathbf{C}\mathbf{A} \right\}$	$ \begin{vmatrix} -1 \\ -3 \end{vmatrix} = \begin{pmatrix} 2 & 4 \\ -3 & -5 \end{pmatrix} \begin{pmatrix} -\frac{1}{\sqrt{2}} & -\frac{1}$	$\begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} = \dots$	Attempts CA ⁻¹ and finds at least one element of the matrix B	M1	
		$= \begin{pmatrix} \sqrt{2} & -3\sqrt{2} \\ \sqrt{2} & 4\sqrt{2} \end{pmatrix}$	C	dependent on the previous B1M1 marks At least 2 correct elements	A1	
		$\begin{pmatrix} -\sqrt{2} & 4\sqrt{2} \end{pmatrix}$		All elements are correct	A1	
			•			(4)
(c) Way 2	$\mathbf{BA} = \mathbf{C}$	$ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} $	2 4 -3 -5	Correct statement using 2×2 matrices. All 3 matrices must contain four elements. (Can be implied). (Allow one slip in copying down C)	B1	
	_	$\frac{a}{\sqrt{2}} - \frac{b}{\sqrt{2}} = 2, \frac{a}{\sqrt{2}} - \frac{b}{\sqrt{2}} = 4$ $\frac{c}{\sqrt{2}} - \frac{d}{\sqrt{2}} = -3, \frac{c}{\sqrt{2}} - \frac{d}{\sqrt{2}} = -3$ s at least one of either a or b .	-5	Applies $\mathbf{B}\mathbf{A} = \mathbf{C}$ and attempts simultaneous equations in a and b or c and d and finds at least one of either a or b or c or d	M1	
		$= \begin{pmatrix} \sqrt{2} & -3\sqrt{2} \\ -\sqrt{2} & 4\sqrt{2} \end{pmatrix}$		lependent on the previous B1M1 marks At least 2 correct elements	A1	
		$\frac{1}{2}, b = -3\sqrt{2}, c = -\sqrt{2}, d = 4\sqrt{2}$	$\sqrt{2}$	All elements are correct	A1	
						(4)
			Owas	tion 4 Notes		8
4. (a)	Note	Condone "Turn" for the 1 st		tion 4 Notes		
(c)	Note			or to a candidate finding CA^{-1}		
	Note You can ignore previous working prior to a candidate finding CA^{-1} (i.e. you can ignore the statements $C = BA$ or $C = AB$).					
	A1 A1	You can allow equivalent m		$\left(\begin{array}{cc} \frac{2}{\sqrt{2}} & -\frac{6}{\sqrt{2}} \end{array}\right)$		

Mathematics F1

■ Past Paper

This resource was created and owned by Pearson Edexcel

WFM01

Leave blank

5. (a) Use the standard results for $\sum_{r=1}^{n} r$ and $\sum_{r=1}^{n} r^3$ to show that, for all positive integers n,

$$\sum_{r=1}^{n} (8r^3 - 3r) = \frac{1}{2} n(n+1)(2n+3)(an+b)$$

where a and b are integers to be found.

(4)

Given that

$$\sum_{r=5}^{10} (8r^3 - 3r + kr^2) = 22768$$

(b) find the exact value of the constant k.

(4)

14

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question Number		Scheme	Note	s	Marks		
5. (a)	$\left\{ \sum_{r=1}^{n} 8r^3 - 3r \right\} = 8\left(\frac{1}{4}n^2(n+1)^2\right) - 3\left(\frac{1}{2}n(n+1)\right)$		Attempt to substitute at least one of the standard formulae correctly into the given expression		M1		
				Correct expression	A1		
		$=\frac{1}{2}n(n+1)[4n(n+1)-3]$	dependent on the particular dependent depend	ast n(n+1) having	dM1		
		$= \frac{1}{2}n(n+1)[4n^2+4n-3]$ $= \frac{1}{2}n(n+1)(2n+3)(2n-1)$	{this step does not h	nave to be written}			
		$= \frac{1}{2}n(n+1)(2n+3)(2n-1)$	Correct comple	tion with no errors	A1 cso		
						(4)	
(b)	Let f(n)	$= \frac{1}{2}n(n+1)(2n+3)(2n-1), g(n) = \frac{8}{4}n^2(n+1)(2n+3)(2n-1)$	$(n+1)^2$ & $h(n) = \pm \frac{3}{2}n(n+1)$	-1)			
	$\int \frac{10}{\mathbf{N}r^3}$	$-3r$ $\left[-\frac{1}{2}(10)(11)(23)(19) - \frac{1}{2}(4)(5)(11)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)$	Atte	mpts to find either and $f(4)$ or $f(5)$			
	r=5	$-3r = \frac{1}{2}(10)(11)(23)(19) - \frac{1}{2}(4)(5)(11)(7)$	• g(10)	and g(4) or g(5)	M1		
		$\left\{ = 24035 - 770 = 23265 \right\}$		and h(4) or h(5)			
	r=5	$r^{2} = k \left(\frac{1}{6} (10)(11)(21) - \frac{1}{6} (4)(5)(9) \right) \left\{ = k(385 - 30) = 355k \right\}$ $r = k \left(5^{2} + 6^{2} + 7^{2} + 8^{2} + 9^{2} + 10^{2} \right) \left\{ = 355k \right\}$ Correct attempt at $\sum_{r=5}^{10} kr^{2}$					
		(5 + 6 + 7 + 6 + 5 + 16)(555K)	'	revious M marks			
	23265+3	497 7 form a linear equation in k using 22/68 and			ddM1		
		355 5	$k = -\frac{497}{355}$ or $-\frac{7}{5}$ or -	lves to give $k =$ -1.4 or equivalent	A1 o.e.		
			333 3			(4)	
		0	4° 5 N -4			8	
5. (a)	Note	Applying eg. $n = 1$, $n = 2$ to the printed	stion 5 Notes equation without applyin	g the standard form	ula		
2. (11)	1,000	to give $a = 2$, $b = -1$ is M0A0M0A0	1				
	Alt	Alternative Method: Using $2n^4 + 4n^3$	$+\frac{1}{2}n^2 - \frac{3}{2}n \equiv an^4 + (b + \frac{5}{2})^2$	$(a)n^3 + (\frac{5}{2}b + \frac{3}{2}a)n^2$	$+\frac{3}{2}bn$ o.e.		
	dM1 A1 cso	M1 Equating coefficients to give both $a = 2$, $b = -1$					
(b)	Note	$f(10) - f(5) = \frac{1}{2}(10)(11)(23)(19) - \frac{1}{2}(5)(6)(13)(9) \left\{ = 24035 - 1755 = 22280 \right\}$					
	Note						
		• (24200 – 165 + 385k) – (800 –	(30+30k) = 22768				
	Note	23400 - 135 + 355k = 22768 $985 + 25k + 1710 + 36k + 2723 + 49k +$	4072 + 64 <i>k</i> + 5805 + 81 <i>k</i>	+7970 + 100k = 232	265 + 355k		
	is fine for the first two M1M1 marks with the final ddM1A1 leading to $k = -1.4$						

■ Past Paper

This resource was created and owned by Pearson Edexcel

WFM01

Leave blank

6. The rectangular hyperbola H has equation $xy = c^2$, where c is a non-zero constant.

The point $P\left(cp, \frac{c}{p}\right)$, where $p \neq 0$, lies on H.

(a) Show that the normal to H at P has equation

 $yp - p^3x = c(1 - p^4)$

(5)

The normal to H at P meets H again at the point Q.

(b) Find, in terms of c and p, the coordinates of Q.

(4)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Mathematics F1

Question Number	Scheme	Notes	Marks		
6. (a)	$y = \frac{c^2}{x} = c^2 x^{-1} \implies \frac{dy}{dx} = -c^2 x^{-2} = -\frac{c^2}{x^2}$ $xy = c^2 \implies x \frac{dy}{dx} + y = 0$	$\frac{dy}{dx} = k x^{-2}$ Correct use of product rule. The sum of two terms, one of which is correct.	M1		
	$\frac{dy}{dx} = \frac{dy}{dp} \cdot \frac{dp}{dx} = -\frac{c}{p^2} \cdot \frac{1}{c}$ their $\frac{dy}{dp} \times \frac{1}{\text{their } \frac{dx}{dp}}$				
	$\frac{dy}{dx} = -c^2 x^{-2} \text{ or } x \frac{dy}{dx} + y = 0 \text{ or } \frac{dy}{dx} = -\frac{c}{p^2} \cdot \frac{1}{c}$	Correct differentiation	A1		
	$So, m_N = p^2$	Perpendicular gradient rule where $m_N (\neq m_T)$ is found from using calculus.	M1		
	$y - \frac{c}{p} = p^2(x - cp)$ or $y = p^2x + \frac{c}{p} - cp^3$ $py - p^3x = c(1 - p^4)^*$	Correct line method where m_N is found from using calculus.	M1		
	$py - p^3x = c(1 - p^4)*$		A1*		
4.			(5)		
(b)	$y = \frac{c^2}{x} \Rightarrow p\frac{c^2}{x} - p^3x = c\left(1 - p^4\right) \text{ or } x = \frac{c^2}{y} \Rightarrow py - p^3\frac{c^2}{y} = c\left(1 - p^4\right)$ Substitutes $y = \frac{c^2}{p}$ or $x = \frac{c^2}{y}$ into the printed equation				
	to obtain an equation in either x , c and p only or in y , c and p only.				
	$p^3x^2 + c(1-p^4)x - c^2p = 0$ or	$py^2 - c(1-p^4)y - c^2p^3 = 0$			
	$(x-cp)(p^3x+c)=0 \Rightarrow x= \text{ or } $	$P^{\prime\prime}$	M1		
	Correct attempt of solving a 3TQ to		A1		
		mplified or simplified. At least one correct coordinate. Both correct coordinates	A1		
	Note: If Q is stated as coordinates then they mu	•	(4)		
(b) ALT	Let Q be $\left(cq, \frac{c}{q}\right)$ so $\frac{c}{q}p - p^3cq = c\left(1 - p^4\right)$ Substitutes $x = cq$ or $y = \frac{c}{q}$ into the printed equation to obtain an equation in only p , c and q .				
	$cp - p^{3}cq^{2} = cq - cqp^{4} \Rightarrow p - q - p^{3}q^{2} + qp^{4} = 0$				
	$(p-q)(1+p^3q) = 0 \Rightarrow q = \dots$ Correct attempt to find q in terms of p				
	,	mplified or At least one correct coordinate	A1		
	() (·n	simplified. Both correct coordinates	A1		
		,	(4)		
			9		

Mathematics F1

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Leave	
blank	

	$f(x) = x^4 - 3x^3 - 15x^2 + 99x - 130$	
(a)	Given that $x = 3 + 2i$ is a root of the equation $f(x) = 0$, use algebra to fine other roots of the equation $f(x) = 0$	
		(7)
(b)	Show the four roots of $f(x) = 0$ on a single Argand diagram.	(2)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question Number	Scheme	Scheme		Notes	Marks
7.	$f(x) = x^4 - 3x^3 - 15x^2 + 99x - 130$				
(a)					
				expand $(x-(3+2i))(x-(3-2i))$	
	or any valid method to establish the quadratic f				M1
	$x^2 - 6x + 13$ e.g. $x = 3 \pm 2i \Rightarrow x - 3 = 3 \pm 2i \Rightarrow x - $			$\pm 2i \Rightarrow x - 3 = \pm 2i \Rightarrow x^2 - 6x + 9 = -4$	IVII
	or sum of roots 6, product of roo				
			1	$x^2 - 6x + 13$	A1
			Note:	Attempt other quadratic factor. Using long division to get as far as	M1
	$f(x) = (x^2 - 6x + 13)(x^2 + 3x - 6x + 13)$	-10)	Note.	$x^2 \pm kx$ is fine for this mark.	IVII
				$x^2 + 3x - 10$	A1
	${x^2 + 3x - 10} = (x+5)(x-2) =$	$\Rightarrow x = \dots$		Correct method for solving a 3TQ on their 2 nd quadratic factor	M1
	x = -5, x = 2			Both values correct	A1
	3, 3, 3			Both values correct	(7)
	Note: Writing down 2, -5, 3+	2i, 3–2i wi	th no wo	orking is B1M0A0M0A0M0A0	(1)
(a)	Alternative using Factor Theorem				
	$\begin{cases} 3 - 2i \\ \left\{ f(2) = \right\} 2^4 - 3 \times 2^3 - 15 \times 2^2 + 99 \times 2 - 130 = 0 \end{cases}$			3 – 2i	B1
				Attempts to find $f(2)$	M1
				Shows that $f(2) = 0$ Attempts to find $f(-5)$	A1
	${f(-5) = (-5)^4 - 3(-5)^3 - 15(-5)^2 + }$	$(-5) = \left((-5)^4 - 3(-5)^3 - 15(-5)^2 + 99 \times (-5) - 130 = 0 \right)$			M1
		<u> </u>		Shows that $f(-5) = 0$	A1
				ows that $f(2) = 0$ and states $x = 2$	M1
				or shows that $f(-5) = 0$ and states $x = -5$ Shows both $f(2) = 0 & f(-5) = 0$	
				A1	
				and states both $x = -5$, $x = 2$	(7)
					(1)
(b)				• 3±2i plotted correctly in	
	Im			quadrants 1 and 4 with some	
	1			evidence of symmetry	
				 dependent on the final M mark being awarded in part 	
	2	×		(a). Their other two roots	
				plotted correctly.	
				Satisfies at least one	Dic
	-5	2 3	Re	of the criteria.	B1ft
		\		Satisfies both criteria with some	
	-2	= €		indication of scale or coordinates	
				stated. All points (arrows) must	B1ft
	be in the correct positions relative				
				to each other.	
					(2)
					9

This resource was created and owned by Pearson Edexcel

WFM01

Leave blank

8. The parabola P has equation $y^2 = 4ax$, where a is a positive constant. The point S is the focus of P.

The point B, which does not lie on the parabola, has coordinates (q, r) where q and r are positive constants and q > a. The line l passes through B and S.

(a) Show that an equation of the line l is

$$(q-a) y = r(x-a)$$
(3)

The line l intersects the directrix of P at the point C.

Given that the area of triangle *OCS* is three times the area of triangle *OBS*, where *O* is the origin,

(b) show that the area of triangle *OBC* is $\frac{6}{5}qr$

(5)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Mathematics F1

Question Number	Scheme			1	Notes	Marks	
8.	$S(a,0), B(q,r), C\left(-a, -\frac{2ar}{q-a}\right) \text{ or } C(-a, -3ar)$						
(a)	$m = \frac{r - 0}{q - a}$ Correct gradient using $(a, 0)$ and (q, r) (Can be implied)						B1
	• $y = \frac{r}{q-a}(x-a)$ or • $y-r = \frac{r}{q-a}(x-q)$ Correct straight line method				M1		
		$0 = \frac{ra}{q-a} + "c" \Rightarrow "c" = -\frac{ra}{q}$ $0 (q-a)y = r(x-a)*$	$\frac{ra}{-a}$ and	$y = \frac{1}{q}$	$\frac{r}{-a}x - \frac{ra}{q-a}$		
	leading to	$\frac{(q-u)y=r(x-u)^{+}}{}$				cso	A1* (3)
(b)	$C\Big(\{-a\},$	$\left(-\frac{2ar}{q-a}\right)$ or height $OCS =$	$=\frac{2ar}{q-a}$			$-\frac{2ar}{q-a} \text{ or } \frac{2ar}{q-a}$	B1
	$\frac{2ar}{q-a} = 3r \text{or} \frac{1}{2}(a) \left(\frac{2ar}{q-a}\right) = 3\left(\frac{1}{2}\right)(a)(r) \implies \dots$				Area and rearra	at OCS = $3r$ or applies $n(OSC) = 3Area(OSB)$ ranges to give $\lambda a = \mu q$ are numerical values.	M1
		$\Rightarrow 5a = 3q$				$5a = 3q \text{ or } a = \frac{3}{5}q$	A1
	Aran(OR	C) = $4\left(\frac{1}{2}\right)\left(\frac{3q}{5}\right)r$			dependent on	the previous M mark	
	Alea(OD)	$C = 4\left(\frac{1}{2}\right)\left(\frac{1}{5}\right)'$			Uses their $a = \frac{3}{5}$	q and applies a correct	dM1
	О	or $=$ $\left(\frac{1}{2}\right)\left(\frac{3q}{5}\right)r + \left(\frac{3}{2}\right)\left(\frac{3q}{5}\right)$	r			and to find Area(OBC) on terms of only q and r	UIVI I
	$=\frac{6}{5}qr(*)$				$\frac{6}{5}qr$	A1* cso	
							(5)
	Alternati	ve Method (Similar Triang	gles)				8
(b)	$\frac{3r}{2a} = \frac{r}{q}$		· · · · /.		$\frac{3r}{2a}$	$\frac{1}{a} = \frac{r}{q - a}$ or equivalent	B1
		$\frac{3r}{2a} = \frac{r}{q-a} \implies \dots$ $\frac{3r}{2a} = \frac{r}{q-a} \text{ or equivalent and rearranges}$ to give $\lambda a = \mu q$ where λ, μ are numerical values.				M1	
	then apply the original mark scheme.						
8. (a)	Note The first two marks B1M1 can be gained together by applying the formula $\frac{y - y_1}{y_2 - y_1} = \frac{x - y_2}{x_2}$					$\frac{c - x_1}{c - x_1}$	
		to give $\frac{y-0}{r-0} = \frac{x-a}{q-a}$					
(b)	Note	If a candidate uses either _	$-\frac{2ar}{q-a}$ o	-3r t	hey can get 1 st M1	but not 2 nd M1 in (b).	

Past Paper

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

	Leav blan
Prove by induction that, for $n \in \mathbb{Z}^+$	
$f(n) = 4^{n+1} + 5^{2n-1}$	
is divisible by 21	
is divisione by 21	(6)

Mathematics F1 WFM01

Winter 2016 www.mystudybro.com
Past Paper (Mark Scheme) This resource was created and owned by Pearson Edexcel

Question Number	Scheme	Notes	Marks		
9.	$f(n) = 4^{n+1} + 5^{2n-1}$				
	$f(1) = 4^2 + 5 = 21$	f(1) = 21 is the minimum	B1		
	$f(k+1) - f(k) = 4^{k+2} + 5^{2(k+1)-1} - (4^{k+1} + 5^{2k-1})$	ı	Attempts $f(k+1) - f(k)$	M1	
	$f(k+1) - f(k) = 3(4^{k+1}) + 24(5^{2k-1})$				
	$= 3(4^{k+1} + 5^{2k-1}) + 21(5^{2k-1})$	E'd	$3(4^{k+1}+5^{2k-1})$ or $3f(k); 21(5^{2k-1})$	A 1 A 1	
	or = $24(4^{k+1} + 5^{2k-1}) - 21(4^{k+1})$	Eithei	$24(4^{k+1}+5^{2k-1}) \text{ or } 24f(k); -21(4^{k+1})$	A1; A1	
	$f(k+1) = 3f(k) + 21(5^{2k-1}) + f(k)$	de	pendent on at least one of the previous	JN/1	
	or $f(k+1) = 24f(k) - 21(4^{k+1}) + f(k)$		accuracy marks being awarded. Makes $f(k+1)$ the subject	dM1	
	If the result is <u>true</u> for $n = k$, then it is <u>true</u>	$e ext{ for } n = k + 1$, As the result has been shown to be	A 1 aga	
	true for $n = 1$, then the 1	result is is t	rue for all $n \in \square^+$.	A1 cso	
				(6)	
WAY 2	General Method:	: Using f(k	(x+1) - mf(k)	0	
	$f(1) = 4^2 + 5 = 21$	f(1) = 21 is the minimum	B1		
	$f(k+1) - mf(k) = 4^{k+2} + 5^{2(k+1)-1} - m(4^{k+1} + 5^2)$	(k-1)	Attempts $f(k+1) - f(k)$	M1	
	$f(k+1) - mf(k) = (4-m)(4^{k+1}) + (25-m)(5^2)$	2k-1)			
	$= (4-m)(4^{k+1}+5^{2k-1}) + 21(5^{2k-1}) $ or = $(25-m)(4^{k+1}+5^{2k-1}) - 21(4^{k+1})$ $(4-m)(4^{k+1}+5^{2k-1})$ or $(4-m)f(k)$; 2 $(25-m)(4^{k+1}+5^{2k-1})$ or $(25-m)f(k)$; -			A 1. A 1	
				A1; A1	
	$f(k+1) = (4-m)f(k) + 21(5^{2k-1}) + mf(k)$	de	pendent on at least one of the previous accuracy marks being awarded.	13.64	
	or $f(k+1) = (25-m)f(k) - 21(4^{k+1}) + mf(k)$		Makes $f(k+1)$ the subject	dM1	
	If the result is true for $n = k$, then it is true	for $n = k + 1$, As the result has been shown to be	A 1	
	true for $n = 1$, then the n	result is is t	rue for all $n \in \square^+$.	A1 cso	
WAY 3	$f(1) = 4^2 + 5 = 21$		f(1) = 21 is the minimum	B1	
	$f(k+1) = 4^{k+2} + 5^{2(k+1)-1}$		Attempts $f(k+1)$	M1	
	$f(k+1) = 4(4^{k+1}) + 25(5^{2k-1})$				
	$=4(4^{k+1}+5^{2k-1})+21(5^{2k-1})$	$4(4^{k+1}+5^{2k-1})$ or $4f(k)$; $21(5^{2k-1})$			
	or = $25(4^{k+1} + 5^{2k-1}) - 21(4^{k+1})$	Either	$25(4^{k+1}+5^{2k-1})$ or $25f(k)$; $-21(4^{k+1})$	A1; A1	
	$f(k+1) = 4f(k) + 21(5^{2k-1})$ or $f(k+1) = 25f(k) - 21(4^{k+1})$		dependent on at least one of the previous accuracy marks being awarded. Makes $f(k+1)$ the subject		
	If the result is true for $n = k$, then it is true for $n = k + 1$, As the result has been shown to be				
	true for $n = 1$, then the result is is true for all $n \in \square^+$.				
	Note Some candidates may set $f(k) = 21M$ and so may prove the following general results				

Winter 2016

Mathematics F1

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

•
$$\{f(k+1) = 4f(k) + 21(5^{2k-1})\} \Rightarrow f(k+1) = 84M + 21(5^{2k-1})$$

•
$$\{f(k+1) = 25f(k) - 21(4^{k+1})\} \Rightarrow f(k+1) = 525M - 21(4^{k+1})$$