Past Paper

This resource was created and owned by Pearson Edexcel

WFM01

Surname	Other na	mes
Pearson Edexcel nternational Advanced Level	Centre Number	Candidate Number
Further Pu		
Mathema Advanced/Advance	tics F1	
Mathema	tics F1	Paper Reference WFM01/01

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B). Coloured pencils and highlighter pens must not be used.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information

- The total mark for this paper is 75.
- The marks for each question are shown in brackets
 use this as a quide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

P 4 6 6 8 3 A 0 1 3 2

Turn over ▶

Leave blank

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Use the standard results for $\sum_{r=1}^{n} r$ and for $\sum_{r=1}^{n} r^3$ to show that, for all positive integers n,

$$\sum_{r=1}^{n} r(r^2 - 3) = \frac{n}{4}(n+a)(n+b)(n+c)$$

where a, b and c are integers to be found.

Question		Scheme	Notes	Marks
Number		2	2.000	
1.	$\sum_{r=1}^n r(r^2 -$	$-3) = \sum_{r=1}^{n} r^3 - 3 \sum_{r=1}^{n} r$		
		$= \frac{1}{4}n^2(n+1)^2 - 3\left(\frac{1}{2}n(n+1)\right)$	Attempts to expand $r(r^2-3)$ and attempts to substitute at least one correct standard formula into their resulting expression.	M1
			Correct expression (or equivalent)	A1
		$= \frac{1}{4}n(n+1)\left[n(n+1) - 6\right]$	dependent on the previous M mark Attempt to factorise at least $n(n+1)$ having ttempted to substitute both the standard formulae	dM1
		$=\frac{1}{4}n(n+1)\left[n^2+n-6\right]$	{this step does not have to be written]	
		$= \frac{1}{4}n(n+1)\left[n^2 + n - 6\right]$ $= \frac{1}{4}n(n+1)(n+3)(n-2)$	Correct completion with no errors	A1 cso
				(4)
			0 4 1 1 1 4	4
1.	Note		Question 1 Notes the printed equation without applying the standard	d formulae
1.	Note		ther combination of these numbers is M0A0M0A0	
	Alt	Alternative Method: Obtains $\sum_{r=1}^{\infty}$	$\sum_{i=1}^{n} r(r^2 - 3) \equiv \frac{1}{4} n(n+1) \Big[n(n+1) - 6 \Big] \equiv \frac{1}{4} n(n+a) e^{-\frac{1}{4} n(n+a)}$	(n+b)(n+c)
		So $a = 1$. $n = 1 \implies -2 = \frac{1}{4}(1)(2)$	$n(1+b)(1+c)$ and $n=2 \Rightarrow 0 = \frac{1}{4}(2)(3)(2+b)(2-b)$	+ c)
		leading to either $b = -2$, $c = 3$ or	b = 3, c = -2	
	dM1	dependent on the previous M m		
		Substitutes in values of n and solv		
	A1 Finds $a = 1$, $b = 3$, $c = -2$ or another combination of these numbers.			
	Note	Note Using only a method of "proof by induction" scores 0 marks unless there is use of the standard formulae when the first M1 may be scored.		

	Note Allow final dM1A1 for $\frac{1}{4}n^4 + \frac{1}{2}n^3 - \frac{5}{4}n^2 - \frac{3}{2}n$ or $\frac{1}{4}n(n^3 + 2n^2 - 5n - 6)$			
		or $\frac{1}{4}(n^4 + 2n^3 - 5n^2 - 6n) \rightarrow \frac{1}{4}$	n(n+1)(n+3)(n-2), from no incorrect working.	
	Note	Give final A0 for eg. $\frac{1}{4}n(n+1)$	$n^2 + n - 6$ $\rightarrow = \frac{1}{4}n(n+1)(x+3)(x-2)$ unless red	covered.

Mathematics F1

■ Past Paper

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

WFM01

		Lea
2.	A parabola P has cartesian equation $y^2 = 28x$. The point S is the focus of the parabola P.	blaı
	(a) White deven the accordinates of the point C	
	(a) Write down the coordinates of the point S. (1)	
	Points A and B lie on the parabola P . The line AB is parallel to the directrix of P and cuts the x -axis at the midpoint of OS , where O is the origin.	
	(b) Find the exact area of triangle <i>ABS</i> .	
	(4)	

DO NOT WRITE IN THIS AREA

Question Number		Scheme	Notes	Marks
2.	$P: y^2 = 28x \text{ or } P(7t^2, 14t)$			
(a)	$(y^2 = 4ax \Rightarrow a = 7) \Rightarrow S(7,0)$		Accept $(7,0)$ or $x = 7$, $y = 0$ or 7 marked on the <i>x</i> -axis in a sketch	B1 (1)
(b)		have x coordinate} $\frac{7}{2}$ $28\left(\frac{7}{2}\right) \Rightarrow y^2 = 98 \Rightarrow y = \dots$	Divides their x coordinate from (a) by 2 and substitutes this into the parabola equation and takes the square root to find $y =$	(1)
	or $y = \sqrt{(2)^n}$ or	$\frac{(2)}{(7) - 3.5)^2 - (3.5)^2} \left\{ = \sqrt{(10.5)^2 - (3.5)^2} \right\}$	or applies $y = \sqrt{\left(2("7") - \left(\frac{"7"}{2}\right)\right)^2 - \left(\frac{"7"}{2}\right)^2}$ or solves	M1
	$7t^2 = 3.5$	$\Rightarrow t = \sqrt{0.5} \Rightarrow y = 2(7)\sqrt{0.5}$	$7t^2 = 3.5$ and finds $y = 2(7)$ "their t"	
	$y = (\pm)7$	$\sqrt{2}$	At least one correct exact value of y. Can be un-simplified or simplified.	A1
	A, B have	coordinates $\left(\frac{7}{2}, 7\sqrt{2}\right)$ and $\left(\frac{7}{2}, -7\sqrt{2}\right)$		
	\bullet $\frac{1}{2}$	$\frac{1}{2} \left(2(7\sqrt{2}) \right) \left(\frac{7}{2} \right)$ $\frac{7}{2} = \frac{7}{2} \cdot \frac{3.5}{2} \cdot \frac{3.5}{2} \cdot \frac{7}{2} \cdot \frac$	dependent on the previous M mark A full method for finding	
	2		he area of triangle ABS.	
		$=\frac{49}{2}\sqrt{2}$	Correct exact answer.	A1
				(4)
		Question	n 2 Notes	
2. (a)	Note	You can give B1 for part (a) for correct r	elevant work seen in either part (a) or part	(b)
(b)	1 st M1	Allow a slip when candidates find the <i>x</i> c 0 < their midpoint < their <i>a</i>	coordinate of their midpoint as long as	
	Note	Give 1 st M0 if a candidate finds and uses	<u></u>	***************************************
	1 st A1	Allow any exact value of either $7\sqrt{2}$, -7	$7\sqrt{2}$, $\sqrt{98}$, $-\sqrt{98}$, $14\sqrt{0.5}$, awrt 9.9 or a	wrt – 9.9
	2 nd dM1	2nd dM1 Either $\frac{1}{2} \left(2 \times \text{their } 7\sqrt{2} \right) \left(\text{their } x_{\text{midpoint}} \right)$ or $\frac{1}{2} \left(2 \times \text{their } 7\sqrt{2} \right) \left(\text{their } 7 - x_{\text{midpoint}} \right)$		pint)
	Note	Condone area triangle $ABS = \left(7\sqrt{2}\right)\left(\frac{7}{2}\right)$, i.e. $\left(\text{their "}7\sqrt{2}\right) \left(\frac{\text{their "}7\right)}{2}\right)$	
	2 nd A1	Allow exact answers such as $\frac{49}{2}\sqrt{2}$, $\frac{49}{\sqrt{2}}$	$\frac{1}{2}$, 24.5 $\sqrt{2}$, $\frac{\sqrt{4802}}{2}$, $\sqrt{\frac{4802}{4}}$, 3.5 $\sqrt{2}$, 49 $\sqrt{\frac{1}{2}}$	
		or $\frac{7}{2}\sqrt{98}$ but do not allow $\frac{1}{2}(3.5)(2\sqrt{9})$	(8) seen by itself	
1	Note	Give final A0 for finding 34 64823228	without reference to a correct exact value.	

www.mystudybro.com

Mathematics F1

This resource was created and owned by Pearson Edexcel

WFM01

Leave blank

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

3.

Past Paper

$$f(x) = x^2 + \frac{3}{x} - 1, \quad x < 0$$

The only real root, α , of the equation f(x) = 0 lies in the interval [-2, -1].

(a) Taking -1.5 as a first approximation to α , apply the Newton-Raphson procedure once to f(x) to find a second approximation to α , giving your answer to 2 decimal places.

(5)

(b) Show that your answer to part (a) gives α correct to 2 decimal places.

(2)

Question Number	Scheme		Notes Marks
3.	$f(x) = x^2 + \frac{3}{x} - 1, x < 0$		
(a)	$f'(x) = 2x - 3x^{-2}$	At on	the of either $x^2 \to \pm Ax$ or $\frac{3}{x} \to \pm Bx^{-2}$ M1 where A and B are non-zero constants.
	$f(-1.5) = -0.75$, $f'(-1.5) = -\frac{13}{3}$		$(-1.5) = -0.75$ or $f'(-1.5) = -\frac{13}{3}$ or 33 or a correct numerical expression for either $f(-1.5)$ or $f'(-1.5)$ Can be implied by later working
	$\left\{ \alpha \simeq -1.5 - \frac{f(-1.5)}{f'(-1.5)} \right\} \Rightarrow \alpha \simeq -1.5 - \frac{-0.7}{-4.333}$	75 333 V	dependent on the previous M mark alid attempt at Newton-Raphson using their values of $f(-1.5)$ and $f'(-1.5)$
	$\left\{ \alpha = -1.67307692 \text{ or } -\frac{87}{52} \right\} \Rightarrow \alpha = -1.67$		dependent on all 4 previous marks -1.67 on their first iteration (Ignore any subsequent iterations) A1 cso cao
	Correct differentiation followed by a		
	Correct answer with no w	orking scol	res no marks in (a) (5)
(b) Way 1	f(-1.675) = 0.01458022 f(-1.665) = -0.0295768		ooses a suitable interval for x , which is in ± 0.005 of their answer to (a) and at least one attempt to evaluate $f(x)$.
	Sign change (positive, negative) (and $f(x)$ is continuous) therefore (a root) $\alpha = -1.67$ (2 dp		Both values correct awrt (or truncated) 1 sf, sign change and conclusion. A1 cso
			97
(b)	Alt 1: Applying Newton-Raphson again Eg	g. Using α =	$=-1.67, -1.673 \text{ or } -\frac{87}{52}$
Way 2	• $\alpha \simeq -1.67 - \frac{-0.007507185629}{-4.415692926} \left\{ = -\frac{0.005743106396}{-4.41783855} \left\{ = -\frac{87}{52} - \frac{0.006082942257}{-4.417893838} \right\} = -1.$	1.671700115 1.671700019	Evidence of applying Newton-Raphson for a second time on their answer to part (a)
	So $\alpha = -1.67 (2 \text{ dp})$		$\alpha = -1.67$ A1
			· · · · · · · · · · · · · · · · · · ·

		Question 3 Notes	
3. (a)	Note	Incorrect differentiation followed by their estimate of α with no evidence of applying the	
		NR formula is final dM0A0.	
	B1	B1 can be given for a correct numerical expression for either $f(-1.5)$ or $f'(-1.5)$	
		Eg. either $(-1.5)^2 + \frac{3}{(-1.5)} - 1$ or $2(-1.5) - \frac{3}{(-1.5)^2}$ are fine for B1. This mark can be implied by applying at least one correct value of either $f(-1.5)$ or $f'(-1.5)$	
	Final	This mark can be implied by applying at least one correct value of either $f(-1.5)$ or $f'(-1.5)$	
	dM1		
		scores final dM0A0.	
	Note	Give final dM0 for applying $1.5 - \frac{f(-1.5)}{f'(-1.5)}$ without first quoting the correct N-R formula.	
3. (b)	A1	Way 1: correct solution only	
		Candidate needs to state both of their values for $f(x)$ to awrt (or truncated) 1 sf along with	
		a reason and conclusion. Reference to change of sign or eg. $f(-1.675) \times f(-1.665) < 0$	
		or a diagram or < 0 and > 0 or one positive, one negative are sufficient reasons. There must	
		be a (minimal, not incorrect) conclusion, eg. $\alpha = -1.67$, root (or α or part (a)) is correct, QED	
		and a square are all acceptable. Ignore the presence or absence of any reference to continuity.	
		A minimal acceptable reason and conclusion is "change of sign, hence root".	
	Note	No explicit reference to 2 decimal places is required. Stating "root is in between -1.675 and -1.665 " without some reference to $\alpha = -1.67$ is not	
	Note	sufficient for A1	
	Note	Accept 0.015 as a correct evaluation of $f(-1.675)$	
	A1	Way 2: correct solution only	
		Their conclusion in Way 2 needs to convey that they understand that $\alpha = -1.67$ to 2 decimal	
		places. Eg. "therefore my answer to part (a) [which must be -1.67] is correct" is fine for A1.	
	Note	$-1.67 - \frac{f(-1.67)}{f'(1.67)} = -1.67(2 \text{ dp})$ is sufficient for M1A1 in part (b).	
	Note	The root of $f(x) = 0$ is -1.67169988 , so candidates can also choose x_1 which is less than	
		-1.67169988 and choose x_2 which is greater than -1.67169988 with both x_1 and x_2 lying	
		in the interval $\begin{bmatrix} -1.675, -1.665 \end{bmatrix}$ and evaluate $f(x_1)$ and $f(x_2)$.	
2 (1)	NT 4		
3. (b)	Note	Helpful Table	
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
		01011200221	
		0.010101303	
		0.002713100	
		$\begin{array}{ c c c c c c }\hline -1.672 & 0.001325627 \\ \hline -1.671 & -0.003091136 \\ \hline \end{array}$	
		-1.670 -0.007507186	
		-1.669 -0.011922523	
		-1.668	
		-1.667 -0.020751072	
		-1.666 -0.025164288	
		-1.665 -0.029576802	

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Given that

Leave blank

, (k	3	, where k is a constant
$A = \begin{bmatrix} 1 \end{bmatrix}$	$k \perp 2$, where k is a constant

(a) show that $det(\mathbf{A}) > 0$ for all real values of k,

(3)

(b) find A^{-1} in terms of k.

(2)

Question Number	Scheme		Notes		Marks
4.	$\mathbf{A} = \begin{pmatrix} k \\ -1 \end{pmatrix}$	$\begin{pmatrix} 3 \\ k+2 \end{pmatrix}$, where k is a constant and let	$\binom{3}{k+2}$, where k is a constant and let $g(k) = k^2 + 2k + 3$		
(a)	$\left\{ \det(\mathbf{A}) = \right\}$	$= \begin{cases} k(k+2) + 3 \text{ or } k^2 + 2k + 3 \end{cases}$	Correct det(A), un-simplified or simplified	B1
Way 1		$= (k+1)^2 - 1 + 3$	Att	tempts to complete the square [usual rules apply]	M1
	=	$= (k+1)^2 + 2 > 0$		$(k+1)^2 + 2$ and > 0	A1 cso
(a)	∫det(A) =	$= \begin{cases} k(k+2)+3 \text{ or } k^2+2k+3 \end{cases}$	Correct det(A), un-simplified or simplified	(3) B1
Way 2	-	$c = \begin{cases} 2^2 - 4(1)(3) \end{cases}$		es " $b^2 - 4ac$ " to their $\det(\mathbf{A})$	M1
	All of		Аррис	$v = 4ac$ to then $\det(\mathbf{A})$	IVII
	• <i>b</i>	$a^2 - 4ac = -8 < 0$			
		ome reference to $k^2 + 2k + 3$ being about o $det(\mathbf{A}) > 0$	ve the <i>x</i> -axis	Complete solution	A1 cso
(a)	$\int g(k) = c$	$\det(\mathbf{A}) = k(k+2) + 3 \text{ or } k^2 + 2k + 3$	Correct det(A), un-simplified or simplified	(3) B1
Way 3	$\frac{g(k) - c}{g'(k) = 2}$	$\frac{k+2=0 \Rightarrow k=-1}{k+2=0 \Rightarrow k=-1}$		alue of k for which $g'(k) = 0$	Б1
·		$(-1)^2 + 2(-1) + 3$		tutes this value of k into $g(k)$	M1
		so $det(\mathbf{A}) > 0$	$g_{min} = 2$ and states $det(A) > 0$		A1 cso
				((3)
(b)	$\mathbf{A}^{-1} = \frac{1}{k}$	$\frac{1}{\binom{2}{2}+2k+3}\binom{k+2}{1}\binom{k}{k}$		$\frac{1}{\text{their det}(\mathbf{A})} \begin{pmatrix} k+2 & -3 \\ 1 & k \end{pmatrix}$	M1
		12113(1 11)		Correct answer in terms of k	A1
					(2)
		Que	stion 4 Notes		
4. (a)		Also allow $k(k+2) - 3$			
	Note	Way 2: Proving $b^2 - 4ac = -8 < 0$	•		
	Note	To gain the final A1 mark for Way 2			
	some reference to $k^2 + 2k + 3$ being above the x-axis (eg. states that coefficient of positive or evaluates $\det(\mathbf{A})$ for any value of k to give a positive result or sketches a quadratic curve that is above the x-axis) before then stating that $\det(\mathbf{A}) > 0$.				
	Note	Attempting to solve $det(\mathbf{A}) = 0$ by a		_	. J ₂ ;
	11016	is enough to score the M1 mark for V			
		some reference to $k^2 + 2k + 3$ being a positive or evaluates $det(\mathbf{A})$ for any	above the <i>x</i> -axis	(eg. states that coefficient of	k^2 is
		quadratic curve that is above the x-ax	•	•	
(b)	A1	$1 \qquad \left(k+2 -3\right) \qquad \left(\frac{k+2}{k^2+2k+3} \frac{-3}{k^2+2k+3}\right)$		t.	

Past Paper

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Leave blank

_
-
_

$$2z + z^* = \frac{3 + 4i}{7 + i}$$

Find z, giving your answer in the form a + bi, where a and b are real constants. You must show all your working.

(5)

DO NOT WRITE IN THIS AREA

Question Number		Scheme	Notes	Marks
5.	$2z + z^* =$	$\frac{3+4i}{7+i}$		
Way 1	$\left\{2z+z^*=\right.$	$= \begin{cases} 2(a+\mathrm{i}b) + (a-\mathrm{i}b) \end{cases}$	Left hand side = $2(a+ib) + (a-ib)$ Can be implied by eg. $3a + ib$ Note: This can be seen anywhere in their solution	B1
	= ($\frac{(3+4i)}{(7+i)}\frac{(7-i)}{(7-i)}$	Multiplies numerator and denominator of the right hand side by $7 - i$ or $-7 + i$	M1
	= -	25 + 25i 50	Applies $i^2 = -1$ to and collects like terms to give right hand side = $\frac{25 + 25i}{50}$ or equivalent	A1
	So, $3a + ib = \frac{1}{2} + \frac{1}{2}i$		dependent on the previous B and M marks Equates either real parts or imaginary parts to give at least one of $a =$ or $b =$	ddM1
	$\Rightarrow a = \frac{1}{6},$	$b = \frac{1}{2}$ or $z = \frac{1}{6} + \frac{1}{2}i$	Either $a = \frac{1}{6}$ and $b = \frac{1}{2}$ or $z = \frac{1}{6} + \frac{1}{2}i$	A1
				(5)
Way 2	`	$= \begin{cases} 2(a+\mathrm{i}b) + (a-\mathrm{i}b) \end{cases}$	Left hand side = $2(a+ib) + (a-ib)$ Can be implied by eg. $3a + ib$	B1
	(3a + ib)($(7 + i) = \dots$	Multiplies their $(3a + ib)$ by $(7 + i)$	M1
	21 <i>a</i> + 3 <i>a</i> i	+7bi – b =	Applies $i^2 = -1$ to give left hand side = $21a + 3ai + 7bi - b$	A1
	, ,	(a-b) + (3a+7b) = 3 + 4i (a-b) = 3, $(3a+7b) = 4$	dependent on the previous B and M marks Equates both real parts and imaginary parts to give at least one of $a =$ or $b =$	ddM1
	$\Rightarrow a = \frac{1}{6}, b = \frac{1}{2} \text{ or } z = \frac{1}{6} + \frac{1}{2}i$		Either $a = \frac{1}{6}$ and $b = \frac{1}{2}$ or $z = \frac{1}{6} + \frac{1}{2}i$	A1
				(5)
				5
			Question 5 Notes	
5.	Note	Some candidates may let $z = x$	$z + iy$ and $z^* = x - iy$.	
		So apply the mark scheme with	$x \equiv a$ and $y \equiv b$.	
	Note			

Past Paper

blank

6. The rectangular hyperbola *H* has equation xy = 25

(a) Verify that, for $t \neq 0$, the point $P\left(5t, \frac{5}{t}\right)$ is a general point on H.

The point A on H has parameter $t = \frac{1}{2}$

(b) Show that the normal to H at the point A has equation

$$8y - 2x - 75 = 0$$

(5)

(1)

This normal at A meets H again at the point B.

(c) Find the coordinates of *B*.

Question Number	Scheme		Notes	Marks	
6.	$H: xy = 25$, $P\left(5t, \frac{5}{t}\right)$ is a general point on $P\left(5t, \frac{5}{t}\right)$	Н			
(a)	Either $5t \left(\frac{5}{t} \right) = 25$ or $y = \frac{25}{x} = \frac{25}{5t} = \frac{25}{5t}$	$\frac{5}{t}$ or	$x = \frac{25}{y} = \frac{25}{\frac{5}{t}} = 5t$ or states $c = 5$	B1	(1)
(b)	$y = \frac{25}{x} = 25x^{-1} \Rightarrow \frac{dy}{dx} = -25x^{-2} = -\frac{25}{x^2}$		$\frac{dy}{dx} = \pm k x^{-2}$ where k is a numerical value		
	$xy = 25 \Rightarrow x \frac{dy}{dx} + y = 0$ Correct use of product rule. The sum of two terms, one of which is correct.			M1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \cdot \frac{\mathrm{d}t}{\mathrm{d}x} = -\frac{5}{t^2} \left(\frac{1}{5}\right)$		$\frac{\mathrm{d}y}{\mathrm{d}t} \times \frac{1}{\mathrm{their}} \frac{\mathrm{d}x}{\mathrm{d}t}$		
	$\left\{ \text{At } A, \ t = \frac{1}{2}, \ x = \frac{5}{2}, \ y = 10 \right\} \Rightarrow \frac{dy}{dx} = -4$		Correct numerical gradient at A, which is found using calculus. Can be implied by later working	A1	
	So, $m_N = \frac{1}{4}$ Applies $m_N = \frac{-1}{m_T}$, to find a numerical m_T where m_T is found from using calculations.		ies $m_N = \frac{-1}{m_T}$, to find a numerical m_N , where m_T is found from using calculus. Can be implied by later working	M1	
	• $y-10 = \frac{1}{4}\left(x-\frac{5}{2}\right)$ Correct line method for where a numerical $m_N \neq m_T$ • $10 = \frac{1}{4}\left(\frac{5}{2}\right) + c \Rightarrow c = \frac{75}{8} \Rightarrow y = \frac{1}{4}x + \frac{75}{8}$ from usin Can be implied by late			M1	
	leading to $8y - 2x - 75 = 0$ (*)		Correct solution only	A1	(=)
(c)	$y = \frac{25}{x} \implies 8\left(\frac{25}{x}\right) - 2x - 75 = 0 \text{or} x = \frac{25}{y} \implies 8y - 2\left(\frac{25}{y}\right) - 75 = 0$ $\text{or} x = 5t, \ y = \frac{5}{t} \implies 8\left(5t\right) - 2\left(\frac{5}{t}\right) - 75 = 0$ Substitutes $y = \frac{25}{x}$ or $x = \frac{25}{y}$ or $x = 5t$ and $y = \frac{5}{t}$ into the printed equation or their normal equation to obtain an equation in either x only, y only or t only			M1	(5)
	$2x^2 + 75x - 200 = 0 \text{or} 8y^2 - 75y - 50$	0 = 0 or	$2t^2 + 15t - 8 = 0 \text{ or } 10t^2 + 75t - 40 = 0$		
	$(2x-5)(x+40) = 0 \Rightarrow x = \dots$ or $(y-10)(8y+5) = 0 \Rightarrow y = \dots$ or $(2t-1)(t+8) = 0 \Rightarrow t = \dots$ dependent on the previous M mark Correct attempt of solving a 3TQ to find either $x = \dots, y = \dots$ or $t = \dots$				
	5			A1	
	$B\left(-40, -\frac{5}{8}\right)$ stat		orrect coordinates (If coordinates are not can be paired together as $x =, y =$)	A1	
	·				(4) 10

		Question 6 Notes
6. (a)	Note	A conclusion is not required on this occasion in part (a).
	B1	Condone reference to $c = 5$ (as $xy = c^2$ and $\left(ct, \frac{c}{t}\right)$ are referred in the Formula book.)
(b)	Note	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \cdot \frac{\mathrm{d}t}{\mathrm{d}x} = -\frac{5}{t^2} \left(\frac{1}{5}\right) = -\frac{1}{t^2} \Rightarrow m_N = t^2 \Rightarrow y - 10 = t^2 \left(x - \frac{5}{2}\right)$ scores only the first M1.
		When $t = \frac{1}{2}$ is substituted giving $y - 10 = \frac{1}{4} \left(x - \frac{5}{2} \right)$
		the response then automatically gets A1(implied) M1(implied) M1
(c)	Note	You can imply the final three marks (dM1A1A1) for either
		$\bullet 8\left(\frac{25}{x}\right) - 2x - 75 = 0 \rightarrow \left(-40, -\frac{5}{8}\right)$
		• $8y - 2\left(\frac{25}{y}\right) - 75 = 0 \to \left(-40, -\frac{5}{8}\right)$
		$\bullet 8(5t) - 2\left(\frac{5}{t}\right) - 75 = 0 \rightarrow \left(-40, -\frac{5}{8}\right)$
		with no intermediate working.
		You can also imply the middle dM1A1 marks for either
		• $8\left(\frac{25}{x}\right) - 2x - 75 = 0 \to x = -40$
		• $8y - 2\left(\frac{25}{y}\right) - 75 = 0 \to y = -\frac{5}{8}$
		• $8(5t) - 2(\frac{5}{t}) - 75 = 0 \rightarrow x = -40 \text{ or } y = -\frac{5}{8}$
		with no intermediate working.
	Note	Writing $x = -40$, $y = -\frac{5}{8}$ followed by $B\left(40, \frac{5}{8}\right)$ or $B\left(-\frac{5}{8}, -40\right)$ is final A0.
	Note	Ignore stating $B\left(\frac{5}{2}, 10\right)$ in addition to $B\left(-40, -\frac{5}{8}\right)$

blank

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

7.

$$\mathbf{P} = \begin{pmatrix} \frac{5}{13} & -\frac{12}{13} \\ \frac{12}{13} & \frac{5}{13} \end{pmatrix}$$

(a) Describe fully the single geometrical transformation U represented by the matrix P.

The transformation V, represented by the 2×2 matrix \mathbf{Q} , is a reflection in the line with equation y = x

(b) Write down the matrix **Q**.

(1)

Given that the transformation V followed by the transformation U is the transformation T, which is represented by the matrix \mathbf{R} ,

(c) find the matrix \mathbf{R} .

(2)

(d) Show that there is a value of k for which the transformation T maps each point on the straight line y = kx onto itself, and state the value of k.

Question Number	Scheme			Notes	Marks	
7. (a)	Rotation		Rotation			
	67 degrees (anticlockwise)	awrt 67 de	Either $\arctan\left(\frac{12}{5}\right)$, $\tan^{-1}\left(\frac{12}{5}\right)$, $\sin^{-1}\left(\frac{12}{13}\right)$, $\cos^{-1}\left(\frac{5}{13}\right)$, awrt 67 degrees, awrt 1.2, truncated 1.1 (anticlockwise), awrt 293 degrees clockwise or awrt 5.1 clockwise			
	about (0,0)		At	mark is dependent on at least one of the previous B marks being awarded. Fout $(0,0)$ or about O or about the origin	dB1	
	Note: Give 2 nd B0 for 67 degrees	clockwise o.e.			(3	3)
(b)	$\left\{\mathbf{Q} = \right\} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$			Correct matrix	B1	
					(1	1)
(c)	$\left\{ \mathbf{R} = \mathbf{PQ} = \right\} \begin{pmatrix} \frac{5}{13} & -\frac{12}{13} \\ \frac{12}{12} & \frac{5}{12} \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; =$	$\begin{pmatrix} -\frac{12}{13} & \frac{5}{13} \\ \frac{5}{13} & \frac{13}{13} \end{pmatrix}$		Multiplies P by their Q in the correct order and finds at least one element	M1	
	$\left(\begin{array}{cc} \frac{12}{13} & \frac{3}{13} \right) \left(\begin{array}{cc} 1 & 0 \end{array}\right)$	$\left(\begin{array}{cc} \frac{3}{13} & \frac{12}{13} \right)$		Correct matrix	A1	
					(2	2)
(d) Way 1	$\begin{pmatrix} -\frac{12}{13} & \frac{5}{13} \\ \frac{5}{13} & \frac{12}{13} \end{pmatrix} \begin{pmatrix} x \\ kx \end{pmatrix} = \begin{pmatrix} x \\ kx \end{pmatrix}$	Forming the equation "their matrix \mathbf{R} " $\begin{pmatrix} x \\ kx \end{pmatrix} = \begin{pmatrix} x \\ kx \end{pmatrix}$ Allow x being replaced by any non-zero number eg. 1.			M1	
		Can be imp	lied ł	by at least one correct ft equations below.		
	$-\frac{12}{13}x + \frac{5kx}{13} = x \text{ or } \frac{5}{13}x + \frac{12kx}{13}$	Uses their matrix equation to form an equation in k and progresses to give $k = 13$ uses their matrix equation to form an equation in k and progresses to give $k = 13$ numerical value			M1	
	So $k = 5$		d	ependent on only the previous M mark $k = 5$	A1 cao	
	Dependent on all previous mark	s being score	d in t			
	• Solves both $-\frac{12}{13}x + \frac{5kx}{13}$	$= x \text{ and } \frac{5}{13}x$	$z + \frac{12}{z}$	$\frac{2kx}{13} = kx \text{ to give } k = 5$		
	• Finds $k = 5$ and checks th			other component	A1 cso	
	• Confirms that $ \begin{pmatrix} -\frac{12}{13} & \frac{5}{13} \\ \frac{5}{13} & \frac{12}{13} \end{pmatrix} \begin{pmatrix} x \\ 5x \end{pmatrix} = \begin{pmatrix} x \\ 5x \end{pmatrix} $					
					(4	4)
(d)	Either $\cos 2\theta = -\frac{12}{13}$, $\sin 2\theta = \frac{5}{13}$ or $\tan 2\theta = -\frac{5}{12}$ Correct follow through equation in 2θ based on their matrix R			M1	_	
Way 2		Full met	hod o	of finding 2θ , then θ and applying $\tan \theta$	M1	
	$\left\{k = \right\} \tan\left(\frac{1}{2}\arccos\left(-\frac{12}{13}\right)\right)$		tan	$\left(\frac{1}{2}\arccos\left(-\frac{12}{13}\right)\right)$ or $\tan\left(\operatorname{awrt} 78.7^{\circ}\right)$ or	A1	
			tan(awrt 1.37). Can be implied.			
	So $k = 5$			k = 5 by a correct solution only	A1	
					(4	
					1	10

		Question 7 Notes						
7. (a)	Note	Condone "Turn" for the 1st B1 mark.						
	Note	Penalise the first B1 mark for candidates giving a combination of transformations.						
(c)	Note	Allow 1 st M1 for eg. "their matrix \mathbf{R} " $\begin{pmatrix} 1 \\ k \end{pmatrix} = \begin{pmatrix} 1 \\ k \end{pmatrix}$ or "their matrix \mathbf{R} " $\begin{pmatrix} k \\ k^2 \end{pmatrix} = \begin{pmatrix} k \\ k^2 \end{pmatrix}$						
		or "their matrix \mathbf{R} " $\begin{pmatrix} \frac{1}{k} \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{k} \\ 1 \end{pmatrix}$ or equivalent						
	Note	$y = (\tan \theta)x : \begin{pmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{pmatrix} = \begin{pmatrix} -\frac{12}{13} & \frac{5}{13} \\ \frac{5}{13} & \frac{12}{13} \end{pmatrix}$						

blank

8.

$$f(z) = z^4 + 6z^3 + 76z^2 + az + b$$

where a and b are real constants.

Given that -3 + 8i is a complex root of the equation f(z) = 0

(a) write down another complex root of this equation.

(1)

(b) Hence, or otherwise, find the other roots of the equation f(z) = 0

(6)

(c) Show on a single Argand diagram all four roots of the equation f(z) = 0

(2)

DO NOT WRITE IN THIS AREA

Question Number		Scheme		Notes	Marks			
8.	$f(z) = z^2$	$a^4 + 6z^3 + 76z^2 + az + b$, a, b a	re real cons	the real constants. $z_1 = -3 + 8i$ is given.				
(a)		-3-8i		-3-8i				
						(1)		
				tempt to expand $(z - (-3 + 8i))(z - (-3 - 8i))$				
				valid method to establish a quadratic factor				
(b)		$z^2 + 6z + 73$	eg. z =	$-3\pm 8i \Rightarrow z+3=\pm 8i \Rightarrow z^2+6z+9=-64$	M1			
(0)		z + 0z + 13		or sum of roots -6 , product of roots 73				
				to give $z^2 \pm (\text{sum})z + \text{product}$				
				$z^2 + 6z + 73$	A1			
				Attempts to find the other quadratic factor.				
	f(-) (-	$-\frac{2}{3}$ + 6 - + 72)($-\frac{2}{3}$ + 2)	e	g. using long division to get as far as $z^2 +$	M1			
	$f(z) = (z^2 + 6z + 73)(z^2 + 3)$			or eg. $f(z) = (z^2 + 6z + 73)(z^2 +)$				
				$z^2 + 3$	A1			
	$\left\{z^2 + 3 = 0 \Rightarrow z = \right\} \pm \sqrt{3}i$		G	dependent on only the previous M mark	dM1			
			Correct method of solving the 2 nd quadratic factor		A 1			
				$\sqrt{3}i$ and $-\sqrt{3}i$	A1	(6)		
(c)				Criteria		(6)		
(0)		Im♠		● -3±8i plotted correctly in				
				quadrants 2 and 3 with some				
		8		evidence of symmetry				
				• Their other two <i>complex roots</i>				
				(which are found from solving their				
				2 nd quadratic in (b)) are plotted correctly with some evidence of				
		$\sqrt{4}\sqrt{3}$		symmetry about the <i>x</i> -axis				
		$\prod_{i=1}^{n}$			D1.6			
		-3 Re		Satisfies at least one of the two criteria	B1 ft			
		$\int_{-\sqrt{3}}$						
				Satisfies both criteria with some indication of scale or coordinates stated.				
		/		All points (arrows) must be in the correct	B1 ft			
		✓ ₋₈		positions relative to each other.				
				1				
						(2)		
			Oues	stion 8 Notes	l .			
8. (b)	Note	Give 3 rd M1 for $z^2 + k = 0$		at least one of either $z = \sqrt{k}$ i or $z = -\sqrt{k}$	i			
(0)	Note	Give 3 rd M0 for $z^2 + k = 0$,			·	******		
						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
	Note	Give 3^{rd} M0 for $z^2 + k = 0$,	$k > 0 \implies z$	$z = \pm k$ or $z = \pm \sqrt{k}$				
	Note	Candidates do not need to f	and $a = 18$.	b = 219				

This resource was created and owned by Pearson Edexcel ■ Past Paper

> Leave blank

The quadratic equation

$$2x^2 + 4x - 3 = 0$$

has roots α and β .

Without solving the quadratic equation,

- (a) find the exact value of
 - (i) $\alpha^2 + \beta^2$
 - (ii) $\alpha^3 + \beta^3$

(5)

(b) Find a quadratic equation which has roots $(\alpha^2 + \beta)$ and $(\beta^2 + \alpha)$, giving your answer in the form $ax^2 + bx + c = 0$, where a, b and c are integers.

Question Number	Scheme		Notes		Marks
9.	$2x^2 + 4x - 3 = 0$ has roots α , β				
(a)	$\alpha + \beta = -\frac{4}{2}$ or -2 , $\alpha\beta = -\frac{3}{2}$		Both $\alpha + \beta = -\frac{4}{2}$ and $\alpha\beta = -\frac{3}{2}$. This		B1
(i)	$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = \dots$		use of a correct identity for (May be implied by the	$\alpha^2 + \beta^2$	M1
	$= (-2)^2 - 2\left(-\frac{3}{2}\right) = 7$		7 from correct		A1 cso
(ii)	$\alpha^{3} + \beta^{3} = (\alpha + \beta)^{3} - 3\alpha\beta(\alpha + \beta) = \dots$		Use of an appropriate and		
	or $= (\alpha + \beta)(\alpha^2 + \beta^2 - \alpha\beta) = \dots$		identity for		M1
	$= (-2)^3 - 3(-\frac{3}{2})(-2) = -17$ or $= (-2)(7\frac{3}{2}) = -17$	-	(May be implied by the		A1 cso
	()(2)				(5)
(b)	$Sum = \alpha^2 + \beta + \beta^2 + \alpha$		Uses at least one of their $\alpha^2 + \beta^2$ or α	$+\beta$ in an	
	$=\alpha^2+\beta^2+\alpha+\beta$		attempt to find a numerical value for th	_	M1
	= 7 + (-2) = 5		$(\alpha^2 + \beta)$ and		
	Product = $(\alpha^2 + \beta)(\beta^2 + \alpha)$		Expands $(\alpha^2 + \beta)(\beta^2 + \alpha)$ and uses at lea		
	$= (\alpha \beta)^2 + \alpha^3 + \beta^3 + \alpha \beta$	thei	$\alpha \beta$ or $\alpha^3 + \beta^3$ in an attempt to find a nu		M1
	$= \left(-\frac{3}{2}\right)^2 - 17 - \frac{3}{2} = -\frac{65}{4}$		value for the product of $(\alpha^2 + \beta)$ and		
	$x^2 - 5x - \frac{65}{4} = 0$		Applies $x^2 - (\text{sum})x + \text{product (Can be}$ (" = 0" not s		M1
	$4x^2 - 20x - 65 = 0$		Any integer multiple of $4x^2 - 20x$ including the second second including the second		A1
					(4)
			$\frac{\alpha^2 + \beta}{\alpha^2}$ and $\frac{\beta^2 + \alpha}{\alpha}$ explicitly		
(b)	Eg. Let $\alpha = \frac{-4 + \sqrt{40}}{4}$, $\beta = \frac{-4 + \sqrt{40}}{4}$	<u>10</u> an	d so $\alpha^2 + \beta = \frac{5 - 3\sqrt{10}}{2}$, $\beta^2 + \alpha = \frac{5 + 3}{2}$	<u>3√10</u> 2	
	$\left \left(x - \left(\frac{5 - 3\sqrt{10}}{2} \right) \right) \left(x - \left(\frac{5 + 3\sqrt{10}}{2} \right) \right) \right $		Uses $(x - (\alpha^2 + \beta))(x - (\alpha^2 + \beta))$	` '/	M1
	$= x^2 - \left(\frac{5+3\sqrt{10}}{2}\right)x - \left(\frac{5-3\sqrt{10}}{2}\right)x$	+ (5	with exact numerical values. (May expendent of the exact numerical values) Attempts to using exact in values for α^2	o expand umerical	M1
	$\Rightarrow x^2 - 5x - \frac{65}{4} = 0$		Collect terms to giv (" = 0" not a		M1
	$4x^2 - 20x - 65 = 0$		Any integer multiple of $4x^2 - 20x = 4x^2 $	-65 = 0,	A1
					(4)
					9

		Question 9 Notes			
9. (a)	1st A1	$\alpha + \beta = 2$, $\alpha\beta = -\frac{3}{2} \Rightarrow \alpha^2 + \beta^2 = 4 - 2(-\frac{3}{2}) = 7$ is M1A0 cso			
(a)	Note	Finding $\alpha + \beta = -2$, $\alpha\beta = -\frac{3}{2}$ by writing down or applying $\frac{-4 + \sqrt{40}}{4}$, $\frac{-4 + \sqrt{40}}{4}$ but then			
		writing $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 4 + 3 = 7$ and $\alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta) = -8 - 9 = -17$			
		scores B0M1A0M1A0 in part (a).			
	Note	Applying $\frac{-4 + \sqrt{40}}{4}$, $\frac{-4 + \sqrt{40}}{4}$ explicitly in part (a) will score B0M0A0M0A0 Eg: Give no credit for $\left(\frac{-4 + \sqrt{40}}{4}\right)^2 + \left(\frac{-4 + \sqrt{40}}{4}\right)^2 = 7$			
		or for $\left(\frac{-4+\sqrt{40}}{4}\right)^3 + \left(\frac{-4+\sqrt{40}}{4}\right)^3 = -17$			
(b)	Candidates are allowed to apply $\frac{-4 + \sqrt{40}}{4}$, $\frac{-4 + \sqrt{40}}{4}$ explicitly in part (b).				
	Note	A correct method leading to a candidate stating $a = 4$, $b = -20$, $c = -65$ without writing a			
		final answer of $4x^2 - 20x - 65 = 0$ is final M1A0			

(5)

blank

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

10. (i) A sequence of positive numbers is defined by

$$u_1 = 5$$

 $u_{n+1} = 3u_n + 2, \quad n \ge 1$

Prove by induction that, for $n \in \mathbb{Z}^+$,

$$u_n = 2 \times (3)^n - 1$$

(ii) Prove by induction that, for $n \in \mathbb{Z}^+$,

$$\sum_{r=1}^{n} \frac{4r}{3^r} = 3 - \frac{(3+2n)}{3^n}$$

(6)

Question Number	Scheme	Notes	Marks			
10.	$u_1 = 5, \ u_{n+1} = 3u_n + 2, \ n \ge 1.$ Required to prove the result, $u_n = 2 \times (3)^n - 1, \ n \in \square^+$					
(i)	$n=1$: $u_1 = 2(3) - 1 = 5$ $u_1 = 6 - 1 = 5$					
	(Assume the result is true for $n = k$)	•				
	$u_{k+1} = 3(2(3)^k - 1) + 2$	Substitutes $u_k = 2(3)^k - 1$ into $u_{k+1} = 3u_k + 2$	M1			
	dependent on the previous M mark					
	$=2(3)^{k+1}-1$	Expresses u_{k+1} in term of 3^{k+1}	dM1			
	` ,	$u_{k+1} = 2(3)^{k+1} - 1$ by correct solution only	A1			
	If the result is $\underline{\text{true for } n = k}$, then it is $\underline{\text{true for } n = k}$	or $n = k + 1$. As the result has been shown to be	A1 cso			
	true for $n = 1$, then the result is true for all n					
			5			
	Required to prove the result	$\sum_{r=1}^{n} \frac{4r}{3^r} = 3 - \frac{(3+2n)}{3^n} , n \in \square^+$				
(ii)	4 5 4					
	$n=1: LHS = \frac{4}{3}, RHS = 3 - \frac{5}{3} = \frac{4}{3}$	Shows or states both LHS = $\frac{4}{3}$ and RHS = $\frac{4}{3}$	B1			
	3 3 3	or states LHS = RHS = $\frac{4}{3}$				
	(Assume the result is true for $n = k$)					
	$\sum_{r=1}^{k+1} \frac{4r}{3^r} = 3 - \frac{(3+2k)}{3^k} + \frac{4(k+1)}{3^{k+1}}$	Adds the $(k+1)^{th}$ term to the sum of k terms	M1			
		dependent on the previous M mark	dM1			
	3(3+2k) - A(k+1)	Makes 3^{k+1} or $(3)3^k$				
	$=3-\frac{3(3+2k)}{3^{k+1}}+\frac{4(k+1)}{3^{k+1}}$	a common denominator for their fractions.				
	3 3	Correct expression with common	A1			
		denominator 3^{k+1} or $(3)3^k$ for their fractions.				
	$= 3 - \left(\frac{3(3+2k) - 4(k+1)}{3^{k+1}}\right) = 3 - \left(\frac{5+2k}{3^{k+1}}\right)$					
	$=3-\frac{(3+2(k+1))}{3^{k+1}}$	$3 - \frac{(3+2(k+1))}{3^{k+1}}$ by correct solution only	A1			
	If the result is true for $n = k$, then it is true for	or $n = k + 1$. As the result has been shown to be	A1 cso			
	true for $n = 1$, then the result is true for all n					
			6			
		10 N	11			
(') 0 ('')		Question 10 Notes				
(i) & (ii)	Note Final A1 for parts (i) and (ii) is dependent on all previous marks being scored in the					
	It is gained by candidates conveying the ideas of all four underlined points either at the end of their solution or as a narrative in their solution.					
(i)	Note $u_1 = 5$ by itself is not sufficient for the 1 st B1 mark in part (i).					
(1)						
(::)	Note $u_1 = 3+2$ without stating $u_1 = 2(3) - 1 = 5$ or $u_1 = 6-1 = 5$ is B0 Note LHS = RHS by itself is not sufficient for the 1 st B1 mark in part (ii).					
(ii)	Note LHS = RHS by itself is not suffic	iencioi die 1 - Di mark in part (II).				