Past Paper

This resource was created and owned by Pearson Edexcel

WFM01 Write your name here Surname Other names Centre Number Candidate Number Pearson Edexcel International Advanced Level **Further Pure Mathematics F1 Advanced/Advanced Subsidiary** Paper Reference Monday 16 January 2017 – Afternoon WFM01/01 Time: 1 hour 30 minutes You must have: **Total Marks** Mathematical Formulae and Statistical Tables (Blue)

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

### Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B). Coloured pencils and highlighter pens must not be used.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided - there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- When a calculator is used, the answer should be given to an appropriate degree of accuracy.

### Information

- The total mark for this paper is 75.
- The marks for **each** question are shown in brackets - use this as a guide as to how much time to spend on each question.

### Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶



| Past Paper | This resource was created and owned by Pearson Edexcel                                          | WF  |
|------------|-------------------------------------------------------------------------------------------------|-----|
|            |                                                                                                 | Lo  |
| 1.         | $f(x) = 2^x - 10 \sin x - 2$ , where x is measured in radians                                   | b   |
|            |                                                                                                 |     |
|            | (a) Show that $f(x) = 0$ has a root, $\alpha$ , between 2 and 3                                 | (2) |
|            |                                                                                                 | (2) |
|            | (b) Use linear interpolation once on the interval [2, 3] to find an approximation to $\alpha$ . |     |
|            | Give your answer to 3 decimal places.                                                           |     |
|            |                                                                                                 | (3) |
|            |                                                                                                 |     |
|            |                                                                                                 |     |
|            |                                                                                                 |     |
|            |                                                                                                 |     |
|            |                                                                                                 |     |
|            |                                                                                                 |     |
|            |                                                                                                 |     |
|            |                                                                                                 |     |
|            |                                                                                                 |     |
|            |                                                                                                 |     |
|            |                                                                                                 |     |
|            |                                                                                                 |     |
|            |                                                                                                 |     |
|            |                                                                                                 |     |
|            |                                                                                                 |     |
|            |                                                                                                 |     |
|            |                                                                                                 |     |
|            |                                                                                                 |     |
|            |                                                                                                 |     |
|            |                                                                                                 |     |
|            |                                                                                                 |     |
|            |                                                                                                 |     |
|            |                                                                                                 |     |
|            |                                                                                                 |     |
|            |                                                                                                 |     |
|            |                                                                                                 |     |
|            |                                                                                                 |     |
|            |                                                                                                 |     |
|            |                                                                                                 |     |
|            |                                                                                                 |     |
|            |                                                                                                 |     |
|            |                                                                                                 |     |
|            |                                                                                                 |     |
|            |                                                                                                 |     |
|            |                                                                                                 |     |

**www.mystudybro.com**This resource was created and owned by Pearson Edexcel

# January 2017 WFM01 Further Pure Mathematics F1 **Mark Scheme**

| Question<br>Number  | Scheme                                                                                                                                                                                                                                                                                                                                                     |                                                                  | Notes           | Marks           |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------|-----------------|
| 1.                  | $f(x) = 2^x - 10\sin x - 2$ , x measured in radians                                                                                                                                                                                                                                                                                                        |                                                                  |                 |                 |
| (a)                 | f(2) = -7.092974268<br>f(3) = 4.588799919                                                                                                                                                                                                                                                                                                                  | 6 1 1 6(2) 16(2)                                                 |                 |                 |
|                     | Sign change {negative, positive} {and $f(x)$ is continuous} therefore {a root}<br>a is between $x = 2$ and $x = 3$                                                                                                                                                                                                                                         | f(3) = awrt                                                      | d 5, A1 cso (2) |                 |
| (b)                 | $\frac{a-2}{"7.092974268"} = \frac{3-a}{"4.588799919"}$ A correct linear interpolation method. Do not allow this mark if a total of one or three negative lengths are used or interpolation either fraction is the wrong way up. This mark may be implied.  or $\frac{a-2}{3-a} = \frac{"7.092974268"}{"4.588799919"} = \frac{3-2}{"4.588799919"}$ implied |                                                                  |                 | is ee if M1     |
|                     | Either $a = \left(\frac{(3)("7.092974268") + (2)("4.58879991974268")}{"4.588799919" + "7.092974268"}\right)$ or $a = 2 + \left(\frac{"7.092974268"}{"4.588799919" + "7.092974268"}\right)$ or $a = 2 + \left(\frac{"-7.092974268"}{"-4.588799919" + "-7.092974268"}\right)$                                                                                | dependent on the previous M mark Rearranges to make $\partial =$ | k.              |                 |
|                     | $\{a = 2.607182963\} \bowtie a = 2.607 (3 dp)$                                                                                                                                                                                                                                                                                                             | 68" )                                                            | 2.60            | 7 A1 <b>cao</b> |
|                     |                                                                                                                                                                                                                                                                                                                                                            |                                                                  |                 | (3)             |
| (b)<br><b>Way 2</b> | $\frac{x}{"7.092974268"} = \frac{1-x}{"4.588799919"} \Rightarrow x = \frac{"7.092974268"}{11.68177419} = 0.6071829632$                                                                                                                                                                                                                                     |                                                                  |                 |                 |
|                     | $a = 2 + 0.6071829632$ Finds x using a correct method of similar triangles and applies "2 + their x" $\left\{a = 2.607182963\right\} \bowtie a = 2.607 \text{ (3 dp)}$ $2.607$                                                                                                                                                                             |                                                                  |                 |                 |
|                     |                                                                                                                                                                                                                                                                                                                                                            |                                                                  |                 | 7 A1 <b>cao</b> |
| (b)<br>Way 3        | = P x = _                                                                                                                                                                                                                                                                                                                                                  | 4.588799919<br>11.68177419                                       |                 |                 |
|                     | $a = 3 - 0.3928170366$ Finds $x$ using a correct method of similar triangles and applies "3 - their $x$ " $\left\{a = 2.607182963\right\} \bowtie a = 2.607 \text{ (3 dp)}$ $2.607$                                                                                                                                                                        |                                                                  |                 |                 |
|                     |                                                                                                                                                                                                                                                                                                                                                            |                                                                  |                 |                 |
|                     |                                                                                                                                                                                                                                                                                                                                                            |                                                                  |                 | 5               |

**www.mystudybro.com**This resource was created and owned by Pearson Edexcel

Mathematics F1

|        | Question 1 Notes |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|--------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1. (a) | A1               | <b>correct solution only</b> Candidate needs to state <b>both</b> $f(2) = awrt - 7$ <b>and</b> $f(3) = awrt 5$ or truncated 4 or truncated 4.5 along with <b>a reason and conclusion.</b> Reference to change of sign <b>or</b> e.g. $f(2) f(3) < 0$ <b>or</b> a diagram <b>or</b> $f(3) = awrt 5$ or truncated 4.5 along with <b>a reason and conclusion.</b> Reference to change of sign <b>or</b> e.g. $f(2) f(3) < 0$ <b>or</b> a diagram <b>or</b> $f(3) = awrt 5$ or truncated 4.5 along with <b>a reason and</b> $f(3) = awrt 5$ or truncated 4 or truncated 4.5 along with <b>a reason and</b> $f(3) = awrt 5$ or truncated 4 or truncated 4.5 along with <b>a reason and</b> $f(3) = awrt 5$ or truncated 4 or truncated 4.5 along with <b>a reason and</b> $f(3) = awrt 5$ or truncated 4 or truncated 4.5 along with <b>a reason and conclusion is</b> $f(3) = awrt 5$ or truncated 4 or truncated 4.5 along with <b>a reason and conclusion is</b> $f(3) = awrt 5$ or truncated 4 or truncated 4.5 along with <b>a reason and conclusion is</b> $f(3) = awrt 5$ or truncated 4 or truncated 4.5 along with <b>a reason and conclusion is</b> $f(3) = awrt 5$ or truncated 4 or truncated 4.5 along with <b>a reason and conclusion is</b> $f(3) = awrt 5$ or truncated 4 or truncated 4.5 along with <b>a reason and conclusion is</b> $f(3) = awrt 5$ or truncated 4 or truncated 4.5 along with <b>a reason and conclusion is</b> $f(3) = awrt 5$ or truncated 4.5 along with <b>a reason and conclusion is</b> $f(3) = awrt 5$ or truncated 4.5 along with <b>a reason and conclusion is</b> $f(3) = awrt 5$ or truncated 4.5 along with <b>a reason and conclusion is</b> $f(3) = awrt 5$ or truncated 4.5 along with <b>a reason and conclusion is</b> $f(3) = awrt 5$ or truncated 4.5 along with <b>a reason and conclusion is</b> $f(3) = awrt 5$ or truncated 4.5 along with <b>a reason and conclusion is</b> $f(3) = awrt 5$ or truncated 4.5 along with <b>a reason and conclusion is</b> $f(3) = awrt 5$ or truncated 4.5 along with <b>a reason and conclusion is</b> $f(3) = awrt 5$ or truncated 4.5 along with <b>a reason and conclusion is</b> $f(3) = awrt 5$ or truncated 4.5 along with <b>a reason and conclusion is</b> $f(3) = awrt 5$ or truncated 4.5 |  |  |
| (a)    | Note             | In degrees, $f(2) = 1.651005033$ , $f(3) = 5.476640438$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|        | Note             | Some candidates will write $f(2) = 4$ , $f(3) = -0.4147$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |

blank

**DO NOT WRITE IN THIS AREA** 

The quadratic equation

$$2x^2 - x + 3 = 0$$

has roots  $\alpha$  and  $\beta$ .

Without solving the equation,

(a) write down the value of  $(\alpha + \beta)$  and the value of  $\alpha\beta$ 

**(1)** 

(b) find the value of  $\frac{1}{\alpha} + \frac{1}{\beta}$ 

**(2)** 

(c) find a quadratic equation which has roots

$$\left(2\alpha - \frac{1}{\beta}\right)$$
 and  $\left(2\beta - \frac{1}{\alpha}\right)$ 

giving your answer in the form  $px^2 + qx + r = 0$  where p, q and r are integers.

**(4)** 

Winter 2017 www.mystudybro.com
Past Paper (Mark Scheme) This resource was created and owned by Pearson Edexcel

**Mathematics F1** WFM01

| Question<br>Number | Scheme                                                                         | Scheme Notes                                                                                                          |        |
|--------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------|
| 2.                 | $2x^2 - x + 3 = 0$ has roots $a$ , $b$                                         |                                                                                                                       |        |
|                    | Note: Parts (a) and (b) can be marked together.                                |                                                                                                                       |        |
| (a)                | $a + b = \frac{1}{2}, ab = \frac{3}{2}$                                        | <b>Both</b> $a + b = \frac{1}{2}$ <b>and</b> $ab = \frac{3}{2}$                                                       | B1     |
|                    |                                                                                | Attangue de maladidade et la colonia de                                                                               | (1)    |
| (b)                | $\frac{1}{a} + \frac{1}{b} = \frac{b+a}{ab} = \frac{\frac{1}{2}}{\frac{3}{2}}$ | Attempts to substitute at least one of their $(a + b)$ or their $ab$ into $\frac{b+a}{ab}$                            | M1     |
|                    | $=\frac{1}{3}$                                                                 | $\frac{1}{3}$ from correct working                                                                                    | A1 cso |
|                    |                                                                                |                                                                                                                       | (2)    |
| (c)                | $Sum = \left(2a - \frac{1}{b}\right) + \left(2b - \frac{1}{a}\right)$          | Uses at least one of $2(\text{their } (a + b))$ or their                                                              |        |
|                    | $=2(a+b)-\left(\frac{1}{a}+\frac{1}{b}\right)$                                 | $\frac{1}{a} + \frac{1}{b}$ in an attempt to find a <b>numerical value</b>                                            | M1     |
|                    | $= 2\left(\frac{1}{2}\right) - \left(\frac{1}{3}\right) = \frac{2}{3}$         | for the sum of $\left(2a - \frac{1}{b}\right)$ and $\left(2b - \frac{1}{a}\right)$ .                                  |        |
|                    | Product = $\left(2a - \frac{1}{b}\right)\left(2b - \frac{1}{a}\right)$         | Expands $\left(2a - \frac{1}{b}\right)\left(2b - \frac{1}{a}\right)$ and uses their                                   |        |
|                    | $= 4ab - 2 - 2 + \frac{1}{ab}$                                                 | ab at least once in an attempt to find a                                                                              | M1     |
|                    | $=4\left(\frac{3}{2}\right)-4+\frac{1}{\left(\frac{3}{2}\right)}$              | numerical value for the product of $\left(2a - \frac{1}{b}\right)$ and $\left(2b - \frac{1}{a}\right)$ .              |        |
|                    | $= 6 - 4 + \frac{2}{3} = \frac{8}{3}$                                          | product of $(2a - \frac{1}{b})$ and $(2b - \frac{1}{a})$ .                                                            |        |
|                    | $x^2 - \frac{2}{3}x + \frac{8}{3} = 0$                                         | Applies $x^2$ - (their sum) $x$ + their product (Can be implied)<br><b>Note:</b> (" = 0" not required for this mark.) | M1     |
|                    | $3x^2 - 2x + 8 = 0$                                                            | Any integer multiple of $3x^2 - 2x + 8 = 0$ including the "= 0"                                                       | A1     |
|                    |                                                                                |                                                                                                                       | (4)    |
| 1                  |                                                                                |                                                                                                                       | 7      |

**www.mystudybro.com**This resource was created and owned by Pearson Edexcel

**Mathematics F1** WFM01

|               |      | Question 2 Notes                                                                                                                                                                                                                                                  |
|---------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>2.</b> (a) | Note | Finding $a + b = \frac{1}{2}$ , $ab = \frac{3}{2}$ by writing down $a$ , $b = \frac{1 + \sqrt{23}i}{4}$ , $\frac{1 - \sqrt{23}i}{4}$ or by applying                                                                                                               |
|               |      | $a + b = \left(\frac{1 + \sqrt{23}i}{4}\right) + \left(\frac{1 - \sqrt{23}i}{4}\right) = \frac{1}{2} \text{ and } ab = \left(\frac{1 + \sqrt{23}i}{4}\right) \left(\frac{1 - \sqrt{23}i}{4}\right) = \frac{3}{2}$                                                 |
|               |      | scores B0 in part (a).                                                                                                                                                                                                                                            |
| (b), (c)      | Note | Those candidates who apply $\partial + \partial = \frac{1}{2}$ , $\partial b = \frac{3}{2}$ in part (b) and/or part (c) having                                                                                                                                    |
|               |      | written down/applied $\partial$ , $b = \frac{1 + \sqrt{23}i}{4}$ , $\frac{1 - \sqrt{23}i}{4}$ in part (a) will be                                                                                                                                                 |
|               |      | penalised the final A mark in part (b) and penalised the final A mark in part (c).                                                                                                                                                                                |
| (b)           | Note | Applying $a$ , $b = \frac{1 + \sqrt{23}i}{4}$ , $\frac{1 - \sqrt{23}i}{4}$ explicitly in part (b) will score M0A0.                                                                                                                                                |
|               |      | E.g.: Give no credit for $\frac{1}{1 + \sqrt{23}i} + \frac{1}{1 - \sqrt{23}i} = \frac{1}{3}$                                                                                                                                                                      |
|               |      | 4 4                                                                                                                                                                                                                                                               |
|               |      | or for $\frac{1}{a} + \frac{1}{b} = \frac{b+a}{ab} = \left( \left( \frac{1+\sqrt{23}i}{4} \right) + \left( \frac{1-\sqrt{23}i}{4} \right) \right) \cdot \left( \left( \frac{1+\sqrt{23}i}{4} \right) \left( \frac{1-\sqrt{23}i}{4} \right) \right) = \frac{1}{3}$ |
| (c)           | Note | Candidates <b>are not allowed</b> to apply $\partial$ , $b = \frac{1 + \sqrt{23}i}{4}$ , $\frac{1 - \sqrt{23}i}{4}$ explicitly in part (c).                                                                                                                       |
|               | Note | A correct method leading to a candidate stating $p = 3$ , $q = -2$ , $r = 8$ without writing a                                                                                                                                                                    |
|               |      | final answer of $3x^2 - 2x + 8 = 0$ is <b>final</b> A0                                                                                                                                                                                                            |

**www.mystudybro.com**This resource was created and owned by Pearson Edexcel

WFM01

| Leave | ) |
|-------|---|
| blank |   |

DO NOT WRITE IN THIS AREA

| ro | iven that $x = -1 + 3i$ is a root of the equation $f(x) = 0$ , use algebra to find the three cots of $f(x) = 0$ .  Solutions based entirely on graphical or numerical methods are not acceptable.) | (7) |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|    | Solutions based entirely on graphical or numerical methods are not acceptable.)                                                                                                                    | (7) |
|    |                                                                                                                                                                                                    |     |
|    |                                                                                                                                                                                                    |     |
|    |                                                                                                                                                                                                    |     |
|    |                                                                                                                                                                                                    |     |
|    |                                                                                                                                                                                                    |     |
|    |                                                                                                                                                                                                    |     |
|    |                                                                                                                                                                                                    |     |
|    |                                                                                                                                                                                                    |     |
|    |                                                                                                                                                                                                    |     |
|    |                                                                                                                                                                                                    |     |
|    |                                                                                                                                                                                                    |     |
|    |                                                                                                                                                                                                    |     |
|    |                                                                                                                                                                                                    |     |
|    |                                                                                                                                                                                                    |     |
|    |                                                                                                                                                                                                    |     |
|    |                                                                                                                                                                                                    |     |
|    |                                                                                                                                                                                                    |     |
|    |                                                                                                                                                                                                    |     |
|    |                                                                                                                                                                                                    |     |
|    |                                                                                                                                                                                                    |     |
|    |                                                                                                                                                                                                    |     |
|    |                                                                                                                                                                                                    |     |
|    |                                                                                                                                                                                                    |     |
|    |                                                                                                                                                                                                    |     |
|    |                                                                                                                                                                                                    |     |
|    |                                                                                                                                                                                                    |     |

DO NOT WRITE IN THIS AREA

**www.mystudybro.com**This resource was created and owned by Pearson Edexcel

**Mathematics F1** WFM01

| Question<br>Number |                                    | Scheme                                                                                                                                | Notes                                                                                                                                                                                                                                                                                                                                                          | Marks |  |  |
|--------------------|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|--|
| 3.                 | $f(x) = x^4$                       | $+2x^3+26x^2+32x+160,$                                                                                                                | $x_1 = -1 + 3i$ is given.                                                                                                                                                                                                                                                                                                                                      |       |  |  |
|                    |                                    | $x_2 = -1 - 3i$                                                                                                                       | Writes down the root -1 - 3i <b>Note:</b> -1 - 3i needs to be stated explicitly somewhere in the candidate's working for B1                                                                                                                                                                                                                                    | B1    |  |  |
|                    |                                    | $x^2 + 2x + 10$                                                                                                                       | Attempt to expand $(x - (-1+3i))(x - (-1-3i))$<br>or $(x - (-1+3i))(x - (\text{their complex } x_2))$<br>or any valid method <b>to establish a quadratic factor</b><br>e.g. $x = -1 \pm 3i \bowtie x + 1 = \pm 3i \bowtie x^2 + 2x + 1 = -9$<br>or sum of roots $-2$ , product of roots $10$<br>to give $x^2 \pm (\text{their sum})x + (\text{their product})$ | M1    |  |  |
|                    |                                    |                                                                                                                                       | $x^2 + 2x + 10$ Attempts to find the other quadratic factor.                                                                                                                                                                                                                                                                                                   | A1    |  |  |
|                    | $f(x) = (x^2 + 2x + 10)(x^2 + 16)$ |                                                                                                                                       | Attempts to find the other quadratic factor.<br>e.g. using long division to get as far as $x^2 +$<br>or e.g. $f(x) = (x^2 + 2x + 10)(x^2 +)$                                                                                                                                                                                                                   | M1    |  |  |
|                    |                                    |                                                                                                                                       | $x^2 + 16$                                                                                                                                                                                                                                                                                                                                                     | A1    |  |  |
|                    | $\left\{x^2 + 16 = \right\}$       | $=0 \triangleright x = $ = $\pm \sqrt{16}i$ ; = $\pm \sqrt{16}i$                                                                      | dependent on only the previous M mark<br>Correct method of solving <i>their</i> $2^{nd}$ quadratic<br>factor to give $x =$                                                                                                                                                                                                                                     | dM1   |  |  |
|                    |                                    |                                                                                                                                       | factor to give $x = \dots$ 4 i and -4 i                                                                                                                                                                                                                                                                                                                        | A1    |  |  |
|                    |                                    |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                | (7)   |  |  |
|                    |                                    |                                                                                                                                       | Question 3 Notes                                                                                                                                                                                                                                                                                                                                               | 7     |  |  |
| 3.                 | Note                               | $x_1 = -1 + 3i$ , $x_2 = -1 - 3i$                                                                                                     | 3i leading to $(x - 1 + 3i)(x - 1 - 3i)$ is $1^{st}$ M0 $1^{st}$ A0                                                                                                                                                                                                                                                                                            |       |  |  |
|                    | Note                               | Give 3 <sup>rd</sup> M1 for $x^2 + k = 0$ , $k > 0$ $\Rightarrow$ at least one of either $x = \sqrt{k}i$ or $x = -\sqrt{k}i$          |                                                                                                                                                                                                                                                                                                                                                                |       |  |  |
|                    |                                    | Therefore $x^2 + 16 = 0$ leading to a final answer of $x = \sqrt{16}i$ only is $3^{rd}$ M1.                                           |                                                                                                                                                                                                                                                                                                                                                                |       |  |  |
|                    | Note                               | $x^2 + 16 = 0$ leading to $x = \pm \sqrt{(16i)}$ unless recovered is 3 <sup>rd</sup> M0 3 <sup>rd</sup> A0.                           |                                                                                                                                                                                                                                                                                                                                                                |       |  |  |
|                    | Note                               | Give 3 <sup>rd</sup> M0 for $x^2 + k = 0$ , $k > 0$ $\triangleright x = \pm ki$                                                       |                                                                                                                                                                                                                                                                                                                                                                |       |  |  |
|                    | Note                               | Give 3 <sup>rd</sup> M0 for $x^2 + k = 0$ , $k > 0$ $\Rightarrow x = \pm k$ or $x = \pm \sqrt{k}$                                     |                                                                                                                                                                                                                                                                                                                                                                |       |  |  |
|                    |                                    | Therefore $x^2 + 16 = 0$ leading to $x = \pm 4$ is $3^{rd}$ M0.                                                                       |                                                                                                                                                                                                                                                                                                                                                                |       |  |  |
|                    |                                    | Therefore $x^2 + 16 = 0$ leading to $(x + 4)(x - 4) = 0 \bowtie x = \pm 4$ is $3^{rd} M0$ .                                           |                                                                                                                                                                                                                                                                                                                                                                |       |  |  |
|                    | Note                               | No working leading to $x = -1 - 3i$ , $4i$ , $-4i$ is B1M0A0M0A0M0A0.                                                                 |                                                                                                                                                                                                                                                                                                                                                                |       |  |  |
|                    | Note                               | Candidates can go from                                                                                                                | $x^2 + 16 = 0$ to $x = \pm 4i$ for the final dM1A1 marks.                                                                                                                                                                                                                                                                                                      |       |  |  |
|                    | 3 <sup>rd</sup> dM1                |                                                                                                                                       | You can give this mark for a correct method for solving <i>their</i> quadratic $x^2 + k$ , $x > 0$                                                                                                                                                                                                                                                             |       |  |  |
|                    | Note                               | e.g. their $2^{\text{nd}}$ quadratic is $x^2 - 16 = 0$ leading to $(x + 4)(x - 4) = 0 \Rightarrow x = \pm 4$ gets $3^{\text{rd}}$ M1. |                                                                                                                                                                                                                                                                                                                                                                |       |  |  |

blank

(a) Use the standard results for  $\sum_{r=1}^{n} r$ ,  $\sum_{r=1}^{n} r^2$  and  $\sum_{r=1}^{n} r^3$  to show that, for all positive integers n,

$$\sum_{r=1}^{n} r(2r+1)(3r+1) = \frac{1}{6}n(n+1)(an^{2}+bn+c)$$

where a, b and c are integers to be determined.

**(5)** 

(b) Hence find the value of

$$\sum_{r=10}^{20} r(2r+1)(3r+1)$$

**(2)** 

| <br> | <br> |
|------|------|
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
| <br> | <br> |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |

## **www.mystudybro.com**This resource was created and owned by Pearson Edexcel **Mathematics F1**

Past Paper (Mark Scheme)

| Question<br>Number |                                                            | Scheme                                                                                                                                                                        |                                    | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             | Marks       |  |
|--------------------|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------|--|
| <b>4.</b> (a)      | $\left\{ \sum_{r=1}^{n} r(2r +$                            | $+1)(3r+1) = \begin{cases} & \bigcap_{r=1}^{n} \left( \frac{6r^3 + 5r^2 + r}{r} \right) \end{cases}$                                                                          | $6r^3 + 5r^2 + r$                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | B1                                          |             |  |
|                    |                                                            | $(n+1)^2 + 5\left(\frac{1}{6}n(n+1)(2n+1)\right) +$                                                                                                                           | ,                                  | Attempts to expand $r(2r+1)(3r+1)$ and attempts to substitute at least one correct standard formula into their resulting expression.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                             | M1          |  |
|                    |                                                            | Correct expression (or equivalent)                                                                                                                                            |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                             |             |  |
|                    | $=\frac{1}{6}n(n+$                                         | -1)(9n(n+1) + 5(2n+1) + 3)                                                                                                                                                    | dependent on the previous M mark   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                             |             |  |
|                    | $=\frac{1}{6}n(n+$                                         | $-1)(9n^2+19n+8)$                                                                                                                                                             | •                                  | Correct complete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ion with no errors.<br>a = 9, b = 19, c = 8 | A1 cso      |  |
|                    |                                                            |                                                                                                                                                                               | 20                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                             | (5)         |  |
| (b)                | Let f(n)                                                   | $= \frac{1}{6}n(n+1)(9n^2+19n+8). S$                                                                                                                                          | So $\sum_{r=10}^{20} r(2r+1)$      | (3r+1) = f(20) - f(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |             |  |
|                    | $=\left(\frac{1}{6}(20)\right)$                            | $(20+1)(9(20)^{2}+19(20)+8) - \left(\frac{1}{6}(9)(9+1)(9(9)^{2}+19(9)+8)\right)$ Attempts to find either $f(20) - f(9)$ or $f(20) - f(10)$                                   |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                             |             |  |
|                    | $\begin{cases} = \left(\frac{1}{6}\right)(20) \end{cases}$ | $(21)(3988) - \left(\frac{1}{6}(9)(10)(908)\right) = 279160 - 13620 = 265540$                                                                                                 |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                             |             |  |
|                    |                                                            |                                                                                                                                                                               |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                             |             |  |
|                    |                                                            | Question 4 Notes                                                                                                                                                              |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                             |             |  |
| <b>4.</b> (a)      | Note                                                       | Applying e.g. $n = 1$ , $n = 2$ , $n = 3$ to the printed equation without applying the standard to give $a = 9$ , $b = 19$ , $c = 8$ is B0M0A0M0A0.                           |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                             | d formulae  |  |
|                    | Alt 1                                                      | Alt Method 1: Using $\frac{3}{2}n^4 + \frac{14}{3}n^3 + \frac{9}{2}n^2 + \frac{4}{3}n \circ \frac{1}{6}an^4 + \frac{1}{6}(a+b)n^3 + \frac{1}{6}(b+c)n^2 + \frac{1}{6}cn$ o.e. |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                             |             |  |
|                    | dM1<br>A1 cso                                              | Equating coefficients and finds at least two of $a = 9$ , $b = 19$ , $c = 8$<br>Finds $a = 9$ , $b = 19$ , $c = 8$ and demonstrates the identity works for all of its terms.  |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                             |             |  |
|                    | Alt 2                                                      | Alt Method 2: $6\left(\frac{1}{4}n^2(n+1)^2\right) + 5\left(\frac{1}{6}n(n+1)(2n+1)\right) + \left(\frac{1}{2}n(n+1)\right) = \frac{1}{6}n(n+1)(an^2+bn+c)$                   |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                             |             |  |
|                    | dM1                                                        | Substitutes $n = 1$ , $n = 2$ , $n = 3$                                                                                                                                       | into this ident                    | ity o.e. and finds at le                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | east two of $a = 9, b$                      | = 19, c = 8 |  |
|                    | A1                                                         | Finds $a = 9, b = 19, c = 8.$                                                                                                                                                 |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                             |             |  |
|                    | Note                                                       | Allow final dM1A1 for $\frac{3}{2}n^4$                                                                                                                                        | $+\frac{14}{3}n^3+\frac{9}{2}n^2$  | $+\frac{4}{3}n \text{ or } \frac{1}{6}n(9n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+28n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+6n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+26n^3+6n^3+6n^3+6n^3+6n^3+6n^3+6n^3+6n^3+$ | $8n^2 + 27n + 8)$                           |             |  |
|                    |                                                            | or $\frac{1}{6}(9n^4 + 28n^3 + 27n^2 + 8n^3)$                                                                                                                                 | $n) \rightarrow \frac{1}{6}n(n+1)$ | $(9n^2 + 19n + 8)$ , from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n no incorrect work                         | ing.        |  |
| (b)                | Note                                                       | Give M1A0 for applying f (20                                                                                                                                                  | 0) - f(10). i.e                    | . 279160 - 20130 {=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 259030}                                     |             |  |
|                    | Note                                                       | Give M0A0 for applying 20(                                                                                                                                                    |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                             |             |  |
|                    | Note                                                       | Give M0A0 for applying 20(                                                                                                                                                    | , , , , ,                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                             |             |  |
|                    | Note                                                       | Give M0A0 for listing individ                                                                                                                                                 | dual terms. e.g                    | g. 6510 + 8602 +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | + 42978 + 50020 =                           | 265540      |  |

■ Past Paper

5. The complex number z is given by

$$z = -7 + 3i$$

Find

(a) 
$$|z|$$

(1)

(b) 
$$\arg z$$
, giving your answer in radians to 2 decimal places.

**(2)** 

Given that 
$$\frac{z}{1+i} + w = 3 - 6i$$

(c) find the complex number w, giving your answer in the form a + bi, where a and b are real numbers. You must show all your working.

(3)

(d) Show the points representing z and w on a single Argand diagram.

(2)



**DO NOT WRITE IN THIS AREA** 

## **Mathematics F1**

# Winter 2017 www.mystudybro.com Past Paper (Mark Scheme) This resource was created and owned by Pearson Edexcel

| Question<br>Number  | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                 | Notes        |                                                                                                                                                  | Marks     |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 5.                  | $z = -7 + 3i$ ; $\frac{z}{1+i} + w = 3 - 6i$                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                 |              |                                                                                                                                                  |           |
| (a)                 | $\left\{ \left  z \right  = \sqrt{(-7)^2 + (3)^2} \right\} = \sqrt{58} \text{ or } 7.61577$ $\sqrt{58} \text{ or awrt } 7.62$                                                                                                                                                                                                                                                                                                                                                                    |                                                                 |              |                                                                                                                                                  | B1        |
| (b)                 | $arg z = \rho - \arctan\left(\frac{3}{7}\right)$ $or = \frac{\rho}{2} + \arctan\left(\frac{7}{3}\right)$ $or = -\rho - \arctan\left(\frac{3}{7}\right)$ Uses trigonometry in order to find an angle in the 2 <sup>nd</sup> quadrant. i.e. in the range of either $\left(1.57, 3.14\right)$ or $\left(-3.14, -4.71\right)$ or $\left(90^{\circ}, 180^{\circ}\right)$ or $\left(-180^{\circ}, -270^{\circ}\right)$ .  Note: $\arctan\left(-\frac{3}{7}\right)$ by itself is not sufficient for M1. |                                                                 |              | (1)<br>M1                                                                                                                                        |           |
|                     | ${ = p - 0.40489} = 2.7367$<br>or ${ = -p - 0.40489} = -3.546$<br>{Note: $arg z = 156.8014$ ° or                                                                                                                                                                                                                                                                                                                                                                                                 | 54 { = -3.55                                                    | 5(2 dp)      | either awrt 2.74 or awrt - 3.55                                                                                                                  | A1 o.e.   |
| (c)<br><b>Way 1</b> | $\frac{(-7+3i)(1-i)}{(1+i)(1-i)} + w = 3-6i$ $\frac{(-7+3i)(1-i)}{(1+i)(1-i)} + w = 3-6i \text{ or } \frac{z}{(1+i)(1-i)} + w = 3-6i$ or can be implied by $-2+5i + w = 3-6i$                                                                                                                                                                                                                                                                                                                    |                                                                 |              | M1                                                                                                                                               |           |
|                     | -2 + 5i + w = 3 - 6i<br>w = 5 - 11i                                                                                                                                                                                                                                                                                                                                                                                                                                                              | dependent on the previous M mark Rearranges to make w = 5 - 11i |              |                                                                                                                                                  | dM1       |
| (c)                 | z + w(1 + i) = (3 - 6i)(1 + i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Fully corr                                                      | ect method o | of multiplying each term by (1 + i)                                                                                                              | (3)<br>M1 |
| Way 2               | $w(1+i) = (9-3i) - (-7+3i)$ $w = \frac{(16-6i)}{(1+i)} \frac{(1-i)}{(1-i)}$ Rearranges to make $w =$ and multiplies by $\frac{(1-i)}{(1-i)}$ $w = 5-11i$ $5-11i$                                                                                                                                                                                                                                                                                                                                 |                                                                 |              | dM1                                                                                                                                              |           |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                 |              |                                                                                                                                                  | (3)       |
| (d)                 | Im ▲ (-7,3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                 |              | Plotting -7 + 3i correctly. st be indicated by a scale (could be axes) <b>or</b> labelled with coordinates or a complex number <i>z</i> .        | B1        |
|                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Re T                                                            |              | Plotting their <i>w</i> correctly. st be indicated by a scale (could be axes) <b>or</b> labelled with coordinates or a complex number <i>w</i> . | B1ft      |
|                     | (5, -11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                 |              | B0 if both -7 + 3i and their w are relative to each other without any scale or labelled coordinates.                                             |           |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                 |              |                                                                                                                                                  | 8         |

blank

**DO NOT WRITE IN THIS AREA** 

Past Paper

**6.** 

$$f(x) = x^3 - \frac{1}{2x} + x^{\frac{3}{2}}, \quad x > 0$$

The root  $\alpha$  of the equation f(x) = 0 lies in the interval [0.6, 0.7].

(a) Taking 0.6 as a first approximation to  $\alpha$ , apply the Newton-Raphson process once to f(x) to obtain a second approximation to  $\alpha$ . Give your answer to 3 decimal places.

(b) Show that your answer to part (a) is correct to 3 decimal places.

**(2)** 

**Mathematics F1** 

Past Paper (Mark Scheme)

**www.mystudybro.com**This resource was created and owned by Pearson Edexcel

| Question<br>Number |                          | Scheme                                                                                                                                                                |                               |                                      | Notes                                                                                                                   | Marks         |
|--------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------|
| 6.                 | f                        | $(x) = x^3 - \frac{1}{2x} + x^{\frac{3}{2}},  x > 0$                                                                                                                  |                               |                                      |                                                                                                                         |               |
| (a)                |                          | $\mathcal{C}(x) = 3x^2 + \frac{1}{2}x^{-2} + \frac{3}{2}x^{\frac{1}{2}}$                                                                                              | $x^3 \rightarrow$             | $\Rightarrow \pm Ax^2 \text{ or } -$ | At least one of either $\frac{1}{2x} \to \pm Bx^{-2} \text{ or } x^{\frac{3}{2}} \to \pm Cx^{\frac{1}{2}}$              | M1            |
| (11)               | or f                     | $\mathcal{C}(x) = 3x^2 + (2x)^{-2}(2) + \frac{3}{2}x^{\frac{1}{2}}$                                                                                                   |                               |                                      | B and C are non-zero constants.  differentiated terms are correct                                                       | A1            |
|                    | $\alpha \simeq 0.6$      | $-\frac{f(0.6)}{f'(0.6)} \} \Rightarrow \alpha \approx 0.6 - \frac{-0.152575}{3.630783}$                                                                              | 53318<br>893                  | Valid atte                           | Correct differentiation. dent on the previous M mark empt at Newton-Raphson using trace values of $f(0.6)$ and $f(0.6)$ | dM1           |
|                    | $\left\{ a=0.64\right\}$ | $420226971$ $\triangleright a = 0.642 (3 dp)$                                                                                                                         |                               | _                                    | ndent on all 4 previous marks<br>0.642 on their first iteration<br>nore any subsequent iterations)                      | A1 cso<br>cao |
|                    | C                        | Correct differentiation followed by                                                                                                                                   |                               |                                      |                                                                                                                         |               |
|                    |                          | Correct answer with <u>no</u>                                                                                                                                         | working                       | scores no n                          | пагкѕ іп (а)                                                                                                            | (5)           |
| (b)<br>Way 1       | ,                        | ) = -0.001630649<br>) = 0.002020826                                                                                                                                   | w                             | ithin $\pm 0.00$                     | suitable interval for $x$ , which is 05 of their answer to (a) and at st one attempt to evaluate $f(x)$ .               | M1            |
|                    | •                        | ige {negative, positive} {and $f(x)$ is} therefore {a root} $\partial = 0.642$ (3 d                                                                                   |                               | Both va                              | lues correct awrt (or truncated) sf, sign change and conclusion.                                                        | A1 cso        |
|                    |                          |                                                                                                                                                                       |                               |                                      |                                                                                                                         | (2)           |
| (b)                |                          | Newton-Raphson again Using &                                                                                                                                          |                               |                                      | g. a = 0.64200226971                                                                                                    |               |
| Way 2              |                          | $\alpha \simeq 0.642 - \frac{0.0001949626}{3.651474882} \left\{ = 0.64 \right.$ $\alpha \simeq 0.642022697 - \frac{0.0002778408}{3.651497787} \left\{ = 0.64 \right.$ |                               |                                      | Evidence of applying<br>Newton-Raphson<br>for a second time on their<br>answer to part (a)                              | M1            |
|                    | a = 0.64                 | 3.031497787<br>42 (3 dp)                                                                                                                                              |                               |                                      | a = 0.642 (3 dp)                                                                                                        | A1 cso        |
|                    |                          | Note: You can recove                                                                                                                                                  | r work fo                     | or Way 2 in                          |                                                                                                                         | (2)           |
|                    |                          |                                                                                                                                                                       |                               | Z 3.7                                |                                                                                                                         | 7             |
|                    | <b>N.</b> 7              |                                                                                                                                                                       | Question                      |                                      | - 11 11 0 11                                                                                                            | .1            |
| <b>6.</b> (a)      | Note                     | Incorrect differentiation followed NR formula is final dM0A0.                                                                                                         |                               |                                      |                                                                                                                         |               |
|                    | Final<br>dM1             | This mark can be implied by apply in $0.6 - \frac{f(0.6)}{f(0.6)}$ . So just $0.6 - \frac{f(0.6)}{f(0.6)}$ scores final dM0A0.                                        | $\frac{f(0.6)}{f(0.6)} \le 0$ | ith an incor                         | rect answer and no other evidence                                                                                       | ce            |
|                    | Note                     | If a candidate writes $0.6 - \frac{f(0.6)}{f(0.6)}$                                                                                                                   | = 0.642                       | with no dif                          | ferentiation, send the response to                                                                                      | review.       |

# **www.mystudybro.com**This resource was created and owned by Pearson Edexcel

Past Paper (Mark Scheme)

|               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Question 6 Notes                                                                                                                                                    |        |  |
|---------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--|
| <b>6.</b> (b) | A1   | Way 1: correct solution only Candidate needs to state <b>both</b> of their values for $f(x)$ to awrt (or truncated) 1 sf along with  a reason and conclusion. Reference to change of sign or e.g. $f(0.6415)  \hat{f}(0.6425) < 0$ or a diagram or $< 0$ and $> 0$ or one negative, one positive are sufficient reasons. There must be a correct conclusion, e.g. $\partial = 0.642  (3  \text{dp})$ . Ignore the presence or absence of any reference to continuity. A minimal acceptable reason and conclusion is "change of sign, so $\partial = 0.642  (3  \text{dp})$ ." |                                                                                                                                                                     |        |  |
|               | Note | Stating "root is in between 0.64 is not sufficient for A1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15 and 0.6425" without some reference to $a = 0.642$ (                                                                                                              | (3 dp) |  |
|               | Note | The root of $f(x) = 0$ is 0.64194                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 66, so candidates can also choose $x_1$ which is less the nich is greater than 0.6419466 with both $x_1$ and $x_2$ and evaluate $f(x_1)$ and $f(x_2)$ .             |        |  |
|               | Note | Therefore acceptable conclusion e.g. 1: $a = 0.642$ (3 dp) e.g. 2: (a) is correct to 3 dp {N e.g. 3: my answer to part (a) is e.g. 4: the answer is correct to 3 Note that saying "a is correct to not acceptable conclusions.                                                                                                                                                                                                                                                                                                                                                | Note: their answer to part (a) must be 0.642} correct to 3 dp {Note: their answer to part (a) must be 0.642} o 3 dp" or "0.642 is correct" or " $a = 0.642$ " are   |        |  |
|               | Note | $0.642 - \frac{f(0.642)}{f(0.642)} = 0.642(3 \mathrm{dp})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ) is sufficient for M1A1 in part (b).                                                                                                                               |        |  |
| <b>6.</b> (b) | Note | x           0.6415           0.6416           0.6417           0.6418           0.6419           0.6420           0.6421           0.6422           0.6423           0.6424           0.6425                                                                                                                                                                                                                                                                                                                                                                                  | f(x) $-0.001630649$ $-0.001265547$ $-0.000900435$ $-0.000535312$ $-0.000170180$ $0.000194963$ $0.000560115$ $0.000925278$ $0.001290451$ $0.001655634$ $0.002020827$ |        |  |

**DO NOT WRITE IN THIS AREA** 

DO NOT WRITE IN THIS AREA

**DO NOT WRITE IN THIS AREA** 

7. (i)

$$\mathbf{A} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

(a) Describe fully the single transformation represented by the matrix A.

**(2)** 

The matrix **B** represents a stretch, scale factor 3, parallel to the *x*-axis.

(b) Find the matrix **B**.

**(2)** 

(ii)

$$\mathbf{M} = \begin{pmatrix} -4 & 3 \\ -3 & -4 \end{pmatrix}$$

The matrix M represents an enlargement with scale factor k and centre (0, 0), where k > 0, followed by a rotation anticlockwise through an angle  $\theta$  about (0, 0).

(a) Find the value of k.

**(2)** 

(b) Find the value of  $\theta$ , giving your answer in radians to 2 decimal places.

**(2)** 

(c) Find  $M^{-1}$ 

**(2)** 



**www.mystudybro.com**This resource was created and owned by Pearson Edexcel

**Mathematics F1** 

| ۱۸/ | MO | ۱1 |
|-----|----|----|
|     |    |    |

| Question<br>Number |                                                                      | Scheme                                                                                                                                                                   |                            | Notes                                                                                                                                | Marks  |            |
|--------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------|------------|
| 7. (i)(a)          | Reflection                                                           | 1                                                                                                                                                                        |                            | Reflection                                                                                                                           | B1     |            |
|                    | in the y-ax                                                          | xis.                                                                                                                                                                     |                            | <b>dependent on the previous B mark</b> Allow y-axis <b>or</b> $x = 0$                                                               | dB1    |            |
|                    |                                                                      |                                                                                                                                                                          |                            | Throw y difficulty was 02 W                                                                                                          |        | (2)        |
| (i)(a)             | Stretch sc                                                           | ale factor - 1                                                                                                                                                           |                            | Stretch scale factor -1                                                                                                              | B1     |            |
| Way 2              | parallel to                                                          | the x-axis                                                                                                                                                               |                            | dB1                                                                                                                                  |        |            |
|                    |                                                                      |                                                                                                                                                                          |                            | parallel to the <i>x</i> -axis                                                                                                       |        | (2)        |
| (b)                | $\left\{ \mathbf{B} = \right\} \begin{pmatrix} 3 \\ 0 \end{pmatrix}$ | $\mathbf{B} = \begin{cases} 3 & 0 \\ 0 & 1 \end{cases} \qquad \begin{pmatrix} 3 & \dots \\ \dots & 1 \end{pmatrix} \text{ or } \begin{pmatrix} 1 \\ \dots \end{pmatrix}$ |                            | $\begin{pmatrix} 3 & \dots \\ \dots & 1 \end{pmatrix} \text{ or } \begin{pmatrix} 1 & \dots \\ \dots & 3 \end{pmatrix}$              | M1     |            |
|                    | ( "                                                                  | -)                                                                                                                                                                       |                            | Correct matrix                                                                                                                       | A1     |            |
|                    |                                                                      |                                                                                                                                                                          |                            |                                                                                                                                      |        | <b>(2)</b> |
|                    |                                                                      | Note: Parts (ii)(a) and (ii                                                                                                                                              | i)(b) can                  | be marked together.                                                                                                                  |        |            |
|                    | $\{k=\}\sqrt{(}$                                                     | $(-4)^2 - (3)(-3); = 5$                                                                                                                                                  | Att                        | tempts $\sqrt{\pm 16 \pm 9}$ or uses full method of                                                                                  | M1;    |            |
| (ii)(a)            | or                                                                   | 4.1.                                                                                                                                                                     | trigonometry to find $k =$ |                                                                                                                                      |        |            |
|                    | ,                                                                    | $-4$ , $k \sin q = -3$<br>= and then $k =$                                                                                                                               | 5 only                     |                                                                                                                                      |        | 0          |
|                    |                                                                      |                                                                                                                                                                          |                            |                                                                                                                                      |        | (2)        |
| (b)                |                                                                      | $-4, 5\sin q = -3, \tan q = \frac{3}{4}$ $\left(\frac{3}{4}\right) \text{ and e.g. } q = p + \tan^{-1}\left(\frac{3}{4}\right)$                                          |                            | Uses trigonometry to find an expression in the range (3.14, 4.71) or (-3.14, -1.57) or (180°, 270°) or (-180°, -90°)                 | M1     |            |
|                    |                                                                      |                                                                                                                                                                          |                            | awrt 3.79 or awrt - 2.50                                                                                                             | A1     |            |
|                    |                                                                      |                                                                                                                                                                          | 1                          |                                                                                                                                      |        | (2)        |
| (c)                | { <b>M</b> -1 _}                                                     | $\frac{1}{25} \begin{pmatrix} -4 & -3 \\ 3 & -4 \end{pmatrix}$                                                                                                           |                            | $\frac{1}{25} \text{ or } \begin{pmatrix} -4 & -3 \\ 3 & -4 \end{pmatrix}$                                                           | M1     |            |
| (c)                | [141 -]                                                              | 25(3-4)                                                                                                                                                                  | -                          | $\frac{1}{25} \begin{pmatrix} -4 & -3 \\ 3 & -4 \end{pmatrix}$ or $\begin{pmatrix} -0.16 & -0.12 \\ 0.12 & -0.16 \end{pmatrix}$ o.e. | A1 o.e | <b>;.</b>  |
|                    |                                                                      |                                                                                                                                                                          |                            |                                                                                                                                      |        | (2)        |
|                    |                                                                      |                                                                                                                                                                          | Jugatia                    | n 7 Notes                                                                                                                            |        | 10         |
| <b>7.</b> (i)      | Note                                                                 | Give B1B0 for "Reflection in the                                                                                                                                         |                            |                                                                                                                                      |        |            |
| (i)                | Note                                                                 |                                                                                                                                                                          |                            | g. "enlargement parallel to the <i>x</i> -axis"                                                                                      |        |            |
| (ii)(b)            | Note                                                                 | Allow M1 (implied) for awrt 217                                                                                                                                          |                            |                                                                                                                                      |        |            |
| (ii)(b)            | Note                                                                 | $ \begin{pmatrix} k\cos q & -k\sin q \\ k\sin q & k\cos q \end{pmatrix} = \begin{pmatrix} -4 & 3 \\ -3 & -4 \end{pmatrix} $                                              |                            |                                                                                                                                      |        |            |
| (ii) (c)           | Note                                                                 | Allow M1 for                                                                                                                                                             |                            |                                                                                                                                      |        |            |

DO NOT WRITE IN THIS AREA

Leave blank

**8.** The parabola C has equation  $y^2 = 4ax$ , where a is a positive constant.

The point  $P(at^2, 2at)$  lies on C.

(a) Using calculus, show that the normal to C at P has equation

$$y + tx = at^3 + 2at$$

**(5)** 

The point S is the focus of the parabola C.

The point B lies on the positive x-axis and OB = 5OS, where O is the origin.

(b) Write down, in terms of a, the coordinates of the point B.

**(1)** 

A circle has centre B and touches the parabola C at two distinct points Q and R.

Given that  $t \neq 0$ ,

(c) find the coordinates of the points Q and R.

**(4)** 

(d) Hence find, in terms of a, the area of triangle BQR.

**(2)** 

Winter 2017 www.mystudybro.com
Past Paper (Mark Scheme) This resource was created and owned by Pearson Edexcel

**Mathematics F1** 

| Question<br>Number | Scheme                                                                                                                                    | Notes                                      | Marks                                                                                         |          |           |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------------------------------------------------------------------|----------|-----------|
| 8.                 | $C: y^2 = 4ax$ , a is a positive constant. $P(at^2, 2at)$ lies on $C$ ; $k, p, q$ are constants.                                          |                                            |                                                                                               |          |           |
| (a)                | $y = 2a^{\frac{1}{2}}x^{\frac{1}{2}} > \frac{dy}{dx} = \frac{1}{2}(2)a^{\frac{1}{2}}x^{-\frac{1}{2}} = \frac{\sqrt{a}}{\sqrt{x}}$         | -<br>!<br><del>-</del><br>:                | $\frac{\mathrm{d}y}{\mathrm{d}x} = \pm k  x^{-\frac{1}{2}}$                                   |          |           |
|                    | $y^2 = 4ax  \triangleright  2y \frac{\mathrm{d}y}{\mathrm{d}x} = 4a$                                                                      | $py\frac{\mathrm{d}y}{\mathrm{d}x}=q$      | M1                                                                                            |          |           |
|                    | $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \cdot \frac{\mathrm{d}t}{\mathrm{d}x} = 2a \left(\frac{1}{2at}\right)$ |                                            | $py \frac{dy}{dx} = q$ their $\frac{dy}{dt} = \frac{1}{\text{their } \frac{dx}{dt}}$          |          |           |
|                    | $\frac{dy}{dx} = a^{\frac{1}{2}}x^{-\frac{1}{2}} \text{ or } 2y\frac{dy}{dx} = 4a \text{ or } \frac{dy}{dx} = 2$                          | $aa\left(\frac{1}{2at}\right)$             | Correct differentiation                                                                       | A1       |           |
|                    | So, $m_N = -t$ Applies $m$                                                                                                                | $n_N = \frac{-1}{m_T},$                    | where $m_T$ is found from using calculus.                                                     | M1       |           |
|                    |                                                                                                                                           |                                            | Can be implied by later working                                                               |          |           |
|                    | $y - 2at = -t(x - at^2)$ or $y = -tx + 2at + at^3$                                                                                        |                                            | line method for an equation of a <b>normal</b> $m_N(^1 m_T)$ is found from using calculus.    | M1       |           |
|                    | leading to $y + tx = at^3 + 2at$ (*)                                                                                                      |                                            | Correct solution only                                                                         | A1       |           |
|                    | <b>Note:</b> $m_N$ must be a function of                                                                                                  | of t for the                               | 2 <sup>nd</sup> M1 and the 3 <sup>rd</sup> M1 mark.                                           |          | (5)       |
| (b)                | Coordinates of B are $(5a, 0)$ $(5a, 0)$ . Condone $x = 5a$ if coordinates are not stated.                                                |                                            |                                                                                               | B1       |           |
|                    |                                                                                                                                           |                                            |                                                                                               |          | (1)       |
| (c)                | $ \begin{cases} \text{their } (5a, 0) \text{ into } y + tx \end{cases} $                                                                  | $= at^3 + 2$                               | $at \triangleright $ $ 5at = at^3 + 2at $                                                     |          |           |
|                    | $\left\{m_{BP}=\right\}$                                                                                                                  | $\frac{2at - 0}{at^2 - 5a}$                | $\frac{1}{t} = -t$                                                                            |          |           |
|                    | $PB^2 = (at^2 - 5a)^2 + (2at)^2 \Rightarrow \frac{6}{3}$                                                                                  | $\frac{\mathrm{d}(PB^2)}{\mathrm{d}t} = 2$ | $2(at^2 - 5a)2at + 2(2at)2a = 0$                                                              | M1       |           |
|                    | $PB^2 = a^2t^4 - 10a^2t^2 + 25a^2 + 4a^2t^2 = a^2$                                                                                        | $^2t^4 - 6a^2t^2$                          | + $25a^2$ $\triangleright \frac{d(PB^2)}{dt} = 4a^2t^3 - 12a^2t = 0$                          |          |           |
|                    | Substitutes their coordinates of <i>B</i> into the r                                                                                      | normal equ                                 | eation <b>or</b> finds $m_{BP}$ and sets this equal to                                        |          |           |
|                    | their $m_N$ or minimises $PB$ or $PB^2$ to obtain                                                                                         | in an equa                                 | ation in a and t only. Note: $t \circ q$ or p.                                                |          |           |
|                    | $t^3 - 3t = 0$ or $t^2 - 3 = 0 \bowtie t =$                                                                                               | 1                                          | <b>dependent on the previous M mark</b> Solves to find $t =$                                  | dM1      |           |
|                    | $\{Q, R \text{ are}\}\ (3a, 2\sqrt{3}a) \text{ and } (3a, -2\sqrt{3}a)$                                                                   |                                            | At least one set of coordinates is correct.  Both sets of coordinates are correct.            | A1<br>A1 |           |
|                    |                                                                                                                                           |                                            | Both sets of coordinates are correct.                                                         |          | (4)       |
| (d)                | $A_{ros} ROP = \frac{1}{(2(2a\sqrt{3}))(5a-3a)}$                                                                                          | Poir                                       | its are in the form $B(ka, 0)$ , $Q(\partial, b)$                                             |          |           |
|                    | Area $BQR = \frac{1}{2}(2(2a\sqrt{3}))(5a - 3a)$                                                                                          |                                            | and $R(a, -b), k^{-1} 0$ and                                                                  | 3.64     |           |
|                    | or = $\frac{1}{2}$ $\begin{vmatrix} 5a & 3a & 3a & 5a \\ 0 & 2\sqrt{3}a & -2\sqrt{3}a & 0 \end{vmatrix}$                                  | apı                                        | plies either $\frac{1}{2} \left\  \left( ka - a \right) \right\  \left( 2b \right)$ or writes | M1       |           |
|                    | . 2 [                                                                                                                                     |                                            | down a correct ft determinant statement.                                                      |          |           |
|                    | $=4a^2\sqrt{3}$                                                                                                                           |                                            | $4a^2\sqrt{3}$                                                                                | A1       | (2)       |
|                    |                                                                                                                                           |                                            |                                                                                               |          | (2)<br>12 |
| i                  | 1                                                                                                                                         | ı                                          |                                                                                               | 1        |           |

**Mathematics F1** 

Past Paper (Mark Scheme)

**www.mystudybro.com**This resource was created and owned by Pearson Edexcel

| Question<br>Number |                                               | Scheme                                                                                                                                                                   | Notes                                                                                                                                                                                       | Marks            |
|--------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 8. (c)<br>Way 2    | $(x-5a)^2 + $ $x^2 - 10ax + $ $x^2 - 6ax + 2$ | nto $(x-5a)^2 + y^2 = r^2$<br>$4ax = r^2$<br>$25a^2 + 4ax = r^2$<br>$25a^2 - r^2 = 0$<br>$= 0$ " $\Rightarrow \begin{cases} 36a^2 - 4(1)(25a^2 - r^2) = 0 \end{cases}$   | Substitutes $y^2 = 4ax$ into $(x - \text{their } x_A)^2 + y^2 = r^2$ and applies " $b^2 - 4ac = 0$ " to the resulting quadratic equation.                                                   | M1               |
|                    | $4r^2 = 64a^2$ So $r = 4a$ §                  | $a^{2} + 4r^{2} = 0$<br>$\Rightarrow r^{2} = 16a^{2} \Rightarrow r = 4a$<br>gives $x^{2} - 6ax + 25a^{2} - 16a^{2} = 0$<br>$9a^{2} = 0 \Rightarrow (x - 3a)(x - 3a) = 0$ | dependent on the previous M mark<br>Obtains $r = ka$ , $k > 0$ , where $k$ is a<br>constant and uses this result to form<br>and solve a quadratic to find $x$ which<br>is in terms of $a$ . | dM1              |
|                    | $\begin{cases} y^2 = 4ax \mid \\ \end{cases}$ | $\Rightarrow$ $y^2 = 4a(3a) = 12a^2 \Rightarrow y = \pm 2\sqrt{3}a$                                                                                                      | At least one set of                                                                                                                                                                         |                  |
|                    | $\{Q, R \text{ are}\}$                        | $(3a, 2\sqrt{3}a)$ and $(3a, -2\sqrt{3}a)$                                                                                                                               | coordinates is correct.  Both sets of coordinates are correct.                                                                                                                              | A1<br>A1         |
|                    |                                               |                                                                                                                                                                          |                                                                                                                                                                                             | (4)              |
|                    |                                               | Question                                                                                                                                                                 | 8 Notes                                                                                                                                                                                     |                  |
| <b>8.</b> (c)      | A marks                                       | Allow $(3a, \sqrt{12} a)$ and $(3a, -\sqrt{12} a)$ as erespectively.                                                                                                     | exact alternatives to $(3a, 2\sqrt{3}a)$ and $(3a)$                                                                                                                                         | $a, -2\sqrt{3}a$ |

**9.** (i) Prove by induction that, for  $n \in \mathbb{Z}^+$ 

$$\sum_{r=1}^{n} \left( 4r^3 - 3r^2 + r \right) = n^3 \left( n + 1 \right)$$

**(6)** 

(ii) Prove by induction that, for  $n \in \mathbb{Z}^+$ 

$$f(n) = 5^{2n} + 3n - 1$$

is divisible by 9

**(6)** 

DO NOT WRITE IN THIS AREA

**DO NOT WRITE IN THIS AREA** 

### **Mathematics F1** WFM01

# Winter 2017 www.mystudybro.com Past Paper (Mark Scheme) This resource was created and owned by Pearson Edexcel

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          |                 | Notes                                                                                         | Marks   |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------|-----------------------------------------------------------------------------------------------|---------|
| 9.                 | (i) $\bigcap_{r=1}^{n} (4r^3 - 3r^2 + r) = n^3(n+1);$ (ii) $f(n) = 5^{2n} + 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3 <i>n</i> − 1 is d                      | livisil         | ble by 9                                                                                      |         |
| (i)                | Shows or states <b>both</b> LHS = 2 <b>and</b> RHS = 2 <b>or</b> states LHS = RHS = 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                 | B1                                                                                            |         |
|                    | (Assume the result is true for $n = k$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (Assume the result is true for $n = k$ ) |                 |                                                                                               |         |
|                    | $ \bigcap_{r=1}^{k+1} (4r^3 - 3r^2 + r) = k^3(k+1) + 4(k+1)^3 - 3(k+1)^2 + (k+1)^3 - 3(k+1)^2 + (k+1)^3 - 3(k+1)^3 + (k+1)^3 - 2(k+1)^3 + (k+1)^3 + ($ | <i>k</i> + 1)                            |                 | Adds the $(k+1)^{th}$ term to the sum of $k$ terms                                            | M1      |
|                    | $= (k+1) \left[ k^3 + 4(k+1)^2 - 3(k+1) + 1 \right]$ or $(k+1) \left[ k^3 + 4k^2 + 5k + 2 \right]$ or $(k+2) \left[ k^3 + 3k^2 \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +3k+1                                    |                 | <b>dependent on the previous M mark</b> . Takes out a factor of either $(k + 1)$ or $(k + 2)$ | dM1     |
|                    | = (k+1)(k+1)(k+2) dependent of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | on both the                              | _               | <b>vious M marks.</b> Factorises out $(k+1)()$ or $(k+1)(k+2)()$                              | ddM1    |
|                    | $= (k+1)^3(k+1+1)$ or $= (k+1)^3(k+2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          | Acl             | hieves this result with no errors.                                                            | A1      |
|                    | If the result is true for $n = k$ , then it is true for $k$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n=k+1.                                   | As th           | e result has been shown to be                                                                 |         |
|                    | true for $n = 1$ , then the resu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |                 |                                                                                               | A1 cso  |
|                    | Note: Expanded quartic is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                          |                 |                                                                                               | 6       |
| (ii)               | $f(1) = 5^2 + 3 - 1 = 27$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                          |                 | f(1) = 27 is the minimum                                                                      | B1      |
| Way 1              | $f(k+1) - f(k) = (5^{2(k+1)} + 3(k+1) - 1) - (5^{2k} + 3k - 1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - 1)                                     |                 | Attempts $f(k+1) - f(k)$                                                                      | M1      |
|                    | $f(k+1) - f(k) = 24(5^{2k}) + 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ,                                        |                 |                                                                                               |         |
|                    | $= 24(5^{2k} + 3k - 1) - 9(8k - 3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          |                 | $24(5^{2k} + 3k - 1)$ or $24f(k)$                                                             | A1      |
|                    | or = $24(5^{2k} + 3k - 1) - 72k + 27$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                 | -9(8k-3) or $-72k+27$                                                                         | A1      |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | dent on at                               | t leas          | t one of the previous accuracy                                                                |         |
|                    | or $f(k+1) = 24f(k) - 72k + 27 + f(k)$ mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ks being a                               | ward            | <b>led.</b> Makes $f(k+1)$ the subject                                                        | dM1     |
|                    | or $f(k+1) = 25(5^{2k} + 3k - 1) - 72k + 27$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nd express                               | es it i         | in terms of $f(k)$ or $(5^{2k} + 3k - 1)$                                                     |         |
|                    | If the result is <u>true for <math>n = k</math></u> , then it is <u>true for <math>n = k</math></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n=k+1, A                                 | As the          | result has been shown to be                                                                   | A 1 aga |
|                    | true for $n = 1$ , then the resul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | t is true fo                             | r all <i>i</i>  | ı (Î ¯)                                                                                       | A1 cso  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          |                 |                                                                                               | (6)     |
| (ii)               | $f(1) = 5^2 + 3 - 1 = 27$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                          |                 | f(1) = 27 is the minimum                                                                      | B1      |
| Way 2              | $f(k+1) = 5^{2(k+1)} + 3(k+1) - 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          |                 | Attempts $f(k+1)$                                                                             | M1      |
|                    | $f(k+1) = 25(5^{2k}) + 3k + 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                          |                 |                                                                                               |         |
|                    | $= 25(5^{2k} + 3k - 1) - 9(8k - 3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          |                 | $25(5^{2k} + 3k - 1)$ or $25f(k)$                                                             | A1      |
|                    | or = $25(5^{2k} + 3k - 1) - 72k + 27$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                 | -9(8k-3) or $-72k+27$                                                                         | A1      |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          |                 | t one of the previous accuracy led. Makes $f(k+1)$ the subject                                | dM1     |
|                    | or $f(k+1) = 25(5^{2k} + 3k - 1) - 72k + 27$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nd express                               | es it i         | in terms of $f(k)$ or $(5^{2k} + 3k - 1)$                                                     |         |
|                    | If the result is true for $n = k$ , then it is true for $n = k$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n=k+1, A                                 | As the          | result has been shown to be                                                                   |         |
|                    | true for $n = 1$ , then the result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | It is true fo                            | or all <i>i</i> | $n(\hat{l})$                                                                                  | A1 cso  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          |                 |                                                                                               | 12      |

**www.mystudybro.com**This resource was created and owned by Pearson Edexcel

|              | Scheme                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | (ii) $f(n) = 5^{2n} + 3n - 1$ is divisible by 9                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | <b>General Method:</b> Using $f(k)$                                                                                 | +1) - mf(k); wh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ere <i>m</i> is an integer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | $f(1) = 5^2 + 3 - 1 = 27$                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | f(1) = 27 is the minimum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | B1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| f(k+1)-      | $mf(k) = (5^{2(k+1)} + 3(k+1) - 1) - m(5^{2(k+1)} + 3(k+1) - 1)$                                                    | $2^{2k} + 3k - 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Attempts $f(k+1) - mf(k)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| f(k+1) -     | $mf(k) = (25 - m)(5^{2k}) + 3k(1 - m) +$                                                                            | (2+m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| = (2         | $(5-m)(5^{2k}+3k-1)-9(8k-3)$                                                                                        | (25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $(5-m)(5^{2k}+3k-1)$ or $(25-m)f(k)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| or = (2      | $(5-m)(5^{2k}+3k-1) - 72k + 27$                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -9(8k-3) or $-72k+27$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| `            |                                                                                                                     | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | accuracy marks being awarded. + 1) the subject and expresses it in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | dM1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| If the       | possilt is two for a lathon it is two                                                                               | For 1 . A o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ii the       | <del></del>                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A1 cso                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|              | <del></del> :                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | $f(1) = 5^2 + 3 - 1 = 27$                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | B1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| f(k+1) -     |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Attempts $f(k+1) - mf(k)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|              |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $m = -2$ and $27(5^{2k})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| e.g. $m = -$ | $-2 P f(k+1) + 2f(k) = 2/(5^{2k}) + 9$                                                                              | 9 <i>K</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | m = -2 and $9k$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| f(k+1) =     |                                                                                                                     | narks being awa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | arded. Makes $f(k+1)$ the subject                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | dM1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|              |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| If the       | <del></del>                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A1 cso                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|              |                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Note         |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | • ${f(k+1) = 25f(k) - 72k}$                                                                                         | $-27$ } $\triangleright f(k+1) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | = 225 <i>M</i> - 72 <i>k</i> + 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                                                                     | Question 9 Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Note         | LHS = RHS by itself is not suffici                                                                                  | ent for the 1st B1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mark in part (i).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Note         | It is gained by candidates conveying the ideas of <b>all</b> four underlined points                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | part.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Note         |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <sup>2k</sup> ),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|              | $f(k+1) = 36(5^{2k}) - 11f(k) + 36k$<br>$f(k+1) = 27(5^{2k}) - 2f(k) + 9k$                                          | f(k+1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $1) = 18(5^{2k}) + 7f(k) - 18k + 9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | f(k+1) = (2) or = (2) or $f(k+1)$ or $f(k+1)$ If the $f(k+1) = (2)$ $f(k+1) = (2)$ If the $f(k+1) = (2)$ Note  Note | General Method: Using $f(k)$ $f(1) = 5^2 + 3 - 1 = 27$ $f(k+1) - mf(k) = (5^{2(k+1)} + 3(k+1) - 1) - m(5)$ $f(k+1) - mf(k) = (25 - m)(5^{2k}) + 3k(1 - m) + 1$ $= (25 - m)(5^{2k} + 3k - 1) - 9(8k - 3)$ or $= (25 - m)(5^{2k} + 3k - 1) - 72k + 27$ $f(k+1) = (25 - m)f(k) - 9(8k - 3) + mf(k)$ or $f(k+1) = (25 - m)f(k) - 72k + 27 + mf(k)$ If the result is true for $n = k$ , then it is true for $n = 1$ , then the result is true for $n = 1$ , then the result is $f(k) = (5^{2(k+1)} + 3(k+1) - 1) - m(5)$ $f(k+1) - mf(k) = (5^{2(k+1)} + 3(k+1) - 1) - m(5)$ $f(k+1) - mf(k) = (25 - m)(5^{2k}) + 3k(1 - m) + 1$ e.g. $f(k+1) = 27(5^{2k}) + 9k - 2f(k)$ If the result is true for $f(k) = 27(5^{2k}) + 9k$ $f(k+1) = 27(5^{2k}) + 9k - 2f(k)$ Note  Some candidates may set $f(k) = 9k$ • $f(k+1) = 25f(k) - 9(8k)$ • $f(k+1) = 25f(k) - 72k + 1$ Note  Note  LHS = RHS by itself is not sufficient in the final A1 for parts (i) and (ii) is different in the final A1 for parts (i) and (ii) is different in the final A1 for parts (i) and (ii) is different in the final A1 for parts (i) and (ii) is different in the final A1 for parts (i) and (ii) is different in the final A1 for parts (i) and (ii) is different in the final A1 for parts (i) and (ii) is different in the final A1 for parts (i) and (ii) is different in the final A1 for parts (i) and (ii) is different in the final A1 for parts (i) and (ii) is different in the final A1 for parts (i) and (ii) is different in the final A1 for parts (i) and (ii) is different in the final A1 for parts (i) and (ii) is different in the final A1 for parts (i) and (ii) is different in the final A1 for parts (i) and (ii) is different in the final A1 for parts (i) and (ii) is different in the final A1 for parts (i) and (ii) is different in the final A1 for parts (i) and (ii) is different in the final A1 for parts (i) and (ii) is different in the final A1 for parts (i) and (ii) is different in the final A1 for parts (i) and (ii) is different in the final A1 for parts (i) and (ii) is different in the | General Method: Using $f(k+1) - mf(k)$ ; where $f(1) = 5^2 + 3 - 1 = 27$ $f(k+1) - mf(k) = (5^{2(k+1)} + 3(k+1) - 1) - m(5^{2k} + 3k - 1)$ $f(k+1) - mf(k) = (25 - m)(5^{2k}) + 3k(1 - m) + (2 + m)$ $= (25 - m)(5^{2k} + 3k - 1) - 9(8k - 3)$ or $= (25 - m)(5^{2k} + 3k - 1) - 72k + 27$ $f(k+1) = (25 - m)f(k) - 9(8k - 3) + mf(k)$ or $f(k+1) = (25 - m)f(k) - 72k + 27 + mf(k)$ If the result is true for $n = k$ , then it is true for $n = k + 1$ , As true for $n = 1$ , then the result is is true for $f(k+1) - mf(k) = (5^{2(k+1)} + 3(k+1) - 1) - m(5^{2k} + 3k - 1)$ $f(k+1) - mf(k) = (5^{2(k+1)} + 3(k+1) - 1) - m(5^{2k} + 3k - 1)$ $f(k+1) - mf(k) = (25 - m)(5^{2k}) + 3k(1 - m) + (2 + m)$ e.g. $m = -2$ $polesical final fin$ | General Method: Using $f(k+1) - mf(k)$ ; where $m$ is an integer $f(1) = 5^2 + 3 - 1 = 27$ $f(k+1) - mf(k) = (5^{2(k+1)} + 3(k+1) - 1) - m(5^{2k} + 3k - 1)$ $f(k+1) - mf(k) = (5^{2(k+1)} + 3(k+1) - 1) - m(5^{2k} + 3k - 1)$ $f(k+1) - mf(k) = (25 - m)(5^{2k} + 3k - 1) - 9(8k - 3)$ $or = (25 - m)(5^{2k} + 3k - 1) - 72k + 27$ $f(k+1) = (25 - m)f(k) - 9(8k - 3) + mf(k)$ $or f(k+1) = (25 - m)f(k) - 72k + 27 + mf(k)$ $or f(k+1) = (25 - m)f(k) - 72k + 27 + mf(k)$ $or f(k+1) = (25 - m)f(k) - 72k + 27 + mf(k)$ $or f(k+1) = (25 - m)f(k) - 72k + 27 + mf(k)$ $or f(k+1) = (25 - m)f(k) - 72k + 27 + mf(k)$ $or f(k+1) = (25 - m)f(k) - 72k + 27 + mf(k)$ $or f(k+1) = (25 - m)f(k) - 72k + 27 + mf(k)$ $or f(k+1) = (25 - m)f(k) - 72k + 27 + mf(k)$ $or f(k+1) = (25 - m)f(k) - 72k + 27 + mf(k)$ $or f(k+1) = (25 - m)f(k) - 72k + 27 + mf(k)$ $or f(k+1) = (25 - m)f(k) - 72k + 27 + mf(k)$ $or f(k+1) = (25 - m)f(k) - 72k + 27 + mf(k)$ $or f(k+1) = (25 - m)f(k) - 72k + 27 + mf(k)$ $or f(k+1) = (25 - m)f(k) - 72k + 27 + mf(k)$ $or f(k+1) = (25 - m)f(k) - 72k + 27 + mf(k)$ $or f(k+1) = (25 - m)f(k) - 72k + 27 + mf(k)$ $or f(k+1) = (25 - m)f(k) - 72k + 27 + mf(k)$ $or f(k+1) = (25 - m)f(k) - 72k + 27 + mf(k)$ $or f(k+1) = (25 - m)f(k) - 72k + 27$ $or f(k+1) = (25 - m)f(k) - 72k + 27$ $or f(k+1) = (25 - m)f(k) - 72k + 27$ $or f(k+1) = (25 - m)f(k) - 72k + 27$ $or f(k+1) = (25 - m)f(k) - 72k + 27$ $or f(k+1) = (25 - m)f(k) - 72k + 27$ $or f(k+1) = (25 - m)f(k) - 72k + 27$ $or f(k+1) = (25 - m)f(k) - 72k + 27$ $or f(k+1) = (25 - m)f(k) - 72k + 27$ $or f(k+1) = (25 - m)f(k) - 72k + 27$ $or f(k+1) = (25 - m)f(k) - 72k + 27$ $or f(k+1) = (25 - m)f(k) - 72k + 27$ $or f(k+1) = (25 - m)f(k) - 72k + 27$ $or f(k+1) = (25 - m)f(k) - 72k + 27$ $or f(k+1) = (25 - m)f(k) - 72k + 27$ $or f(k+1) = (25 - m)f(k) - 72k + 27$ $or f(k+1) = (25 - m)f(k) - 72k + 27$ $or f(k+1) = (25 - m)f(k) - 72k + 27$ $or f(k+1) = (25 - m)f(k) - 72k + 27$ $or f(k+1) = (25 - m)f(k) - 72k + 27$ $or f(k+1) = (25 - m)f(k)$ $or f(k+1) = (25 - m)f(k)$ $or f(k+1) = (25 - m)f(k)$ $or f(k+$ |

**www.mystudybro.com**This resource was created and owned by Pearson Edexcel

|                | Question 9 Notes Continued |                                                                                                                |                                                     |          |  |  |
|----------------|----------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------|--|--|
| <b>9.</b> (ii) | The A1A                    | (ii) $f(n) = 5^{2n} + 3n - 1$ is divisible by 9<br><b>1A1dM1 marks for Alternatives using</b> $f(k+1) - mf(k)$ |                                                     |          |  |  |
|                | Way 4.1                    | $f(k+1) = 25(5^{2k}) + 3k + 2$                                                                                 |                                                     |          |  |  |
|                |                            | $= 36(5^{2k}) - 11(5^{2k}) + 3k + 2$                                                                           |                                                     |          |  |  |
|                |                            | $= 36(5^{2k}) - 11[(5^{2k}) + 3k - 1] + 36k - 9$                                                               | $m = -11$ and $36(5^{2k})$<br>m = -11 and $36k - 9$ | A1<br>A1 |  |  |
|                |                            | $f(k+1) = 36(5^{2k}) - 11f(k) + 36k - 9$<br>or $f(k+1) = 36(5^{2k}) - 11[(5^{2k}) + 3k - 1] + 36k - 9$         | as before                                           | dM1      |  |  |
|                | Way 4.2                    | $f(k+1) = 25(5^{2k}) + 3k + 2$                                                                                 |                                                     |          |  |  |
|                |                            | $= 27(5^{2k}) - 2(5^{2k}) + 3k + 2$                                                                            |                                                     |          |  |  |
|                |                            | $= 27(5^{2k}) - 2[(5^{2k}) + 3k - 1] + 9k$                                                                     | $m = -2$ and $27(5^{2k})$                           | A1       |  |  |
|                |                            | $f(k+1) = 27(5^{2k}) - 2f(k) + 9k$ or $f(k+1) = 27(5^{2k}) - 2[(5^{2k}) + 3k - 1] + 9k$                        | m = -2 and $9k$ as before                           | dM1      |  |  |
|                | Way 4.3                    | $f(k+1) = 25(5^{2k}) + 3k + 2$                                                                                 |                                                     |          |  |  |
|                |                            | $= 18(5^{2k}) + 7(5^{2k}) + 3k + 2$                                                                            |                                                     |          |  |  |
|                |                            | $= 18(5^{2k}) + 7[(5^{2k}) + 3k - 1] - 18k + 9$                                                                | $m = 7$ and $18(5^{2k})$<br>m = 7 and $-18k + 9$    | A1<br>A1 |  |  |
|                |                            | $f(k+1) = 18(5^{2k}) + 7f(k) - 18k + 9$ or $f(k+1) = 18(5^{2k}) + 7[(5^{2k}) + 3k - 1] - 18k + 9$              | as before                                           | dM1      |  |  |
|                | Way 4.4                    | $f(k+1) = 25(5^{2k}) + 3k + 2$                                                                                 |                                                     |          |  |  |
|                |                            | $= 9(5^{2k}) + 16(5^{2k}) + 3k + 2$                                                                            |                                                     |          |  |  |
|                |                            | $= 9(5^{2k}) + 16[(5^{2k}) + 3k - 1] - 45k + 18$                                                               | $m = 16$ and $9(5^{2k})$<br>m = 16 and $-45k + 18$  | A1<br>A1 |  |  |
|                |                            | $f(k+1) = 9(5^{2k}) + 16f(k) - 45k + 18$<br>or $f(k+1) = 9(5^{2k}) + 16[(5^{2k}) + 3k - 1] - 45k + 18$         | as before                                           | dM1      |  |  |