Past Paper

This resource was created and owned by Pearson Edexcel

WFM01

Surname	Other na	ames
Pearson Edexcel International Advanced Level	Centre Number	Candidate Number
Further Pu Mathemat	tics F1	
Advanced/Advance	d Subsidiary	
Friday 19 May 2017 – Morn Time: 1 hour 30 minutes		Paper Reference WFM01/01

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B). Coloured pencils and highlighter pens must not be used.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information

- The total mark for this paper is 75.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

blank

The quadratic equation

$$3x^2 - 5x + 1 = 0$$

has roots α and β .

Without solving the quadratic equation, find the exact value of

$$\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$$

(4)

DO NOT WRITE IN THIS AREA

WFM01

www.mystudybro.com
This resource was created and owned by Pearson Edexcel

WFM01 Further Pure Mathematics F1 **Mark Scheme**

Question Number		Scheme	Notes	Marks	
1.		$3x^{2}$ -	$5x + 1 = 0$ has roots ∂ , b		
	a + b =	$\frac{5}{3}$, $ab = \frac{1}{3}$	Both $a + b = \frac{5}{3}$ and $ab = \frac{1}{3}$, seen or implied	B1	
		$=\frac{a^2+b^2}{ab}=\dots$	Attempts to substitute at least one of their $(a^2 + b^2)$ or their ab into $\frac{a^2 + b^2}{ab}$	M1	
	$a^2 + b^2 =$	$=(a+b)^2-2ab=$	Use of a correct identity for $a^2 + b^2$ (May be implied by their work)	M1	
	a h	$(5)^2 - 2(1)$ 19 10	dependent on ALL previous marks being awarded		
	$\frac{a}{b} + \frac{b}{a} =$	$= \frac{\left(\frac{5}{3}\right)^2 - 2\left(\frac{1}{3}\right)}{\left(\frac{1}{3}\right)} = \frac{\frac{19}{9}}{\frac{1}{3}} = \frac{19}{3}$	$\frac{19}{3}$ or $\frac{57}{9}$ or $6\frac{1}{3}$ or 6.3 o.e. from correct working	A1 cso	
			(4)		
			Question 1 Notes	4	
		5 1			
1.	Note	Finding $a + b = \frac{3}{3}$, $ab = \frac{1}{3}$	by writing down a , $b = \frac{5 + \sqrt{13}}{6}$, $\frac{5 - \sqrt{13}}{6}$ or by applying		
	Note	Those candidates who then apply $a + b = \frac{5}{3}$, $ab = \frac{1}{3}$ having written down/applied			
			part (a) can only score the M marks.		
	Note	Give M0M0A0 for $\frac{a}{b} + \frac{b}{a}$	Give M0M0A0 for $\frac{\partial}{\partial} + \frac{b}{\partial} = \frac{\left(\frac{5+\sqrt{13}}{6}\right)}{\left(\frac{5-\sqrt{13}}{6}\right)} + \frac{\left(\frac{5-\sqrt{13}}{6}\right)}{\left(\frac{5+\sqrt{13}}{6}\right)} = \frac{19}{3}$		
	Note	Give M0M0A0 for $\frac{a}{b} + \frac{b}{a}$	$= \frac{a^2 + b^2}{ab} = \frac{\left(\frac{5 + \sqrt{13}}{6}\right)^2 + \left(\frac{5 - \sqrt{13}}{6}\right)^2}{\left(\frac{5 + \sqrt{13}}{6}\right)\left(\frac{5 - \sqrt{13}}{6}\right)} = \frac{19}{3}$		
	Note	Give M0M0A0 for $\frac{a}{b} + \frac{b}{a}$	$= \frac{(a+b)^2 - 2ab}{ab} = \frac{\left(\left(\frac{5+\sqrt{13}}{6}\right) + \left(\frac{5-\sqrt{13}}{6}\right)\right)^2 - 2\left(\frac{5+\sqrt{13}}{6}\right)\left(\frac{5-\sqrt{13}}{6}\right)}{\left(\frac{5+\sqrt{13}}{6}\right)\left(\frac{5-\sqrt{13}}{6}\right)}$	$=\frac{19}{3}$	
	Note	Allow B1 for both $S = \frac{5}{3}$ a	and $P = \frac{1}{3}$ or for $\mathring{a} = \frac{5}{3}$ and $\widetilde{O} = \frac{1}{3}$		
	Note	Give final A0 for 6.3 or 6.3	3 without reference to $\frac{19}{3}$ or $\frac{57}{9}$ or $6\frac{1}{3}$		

blank

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Given that

$$\mathbf{A} = \begin{pmatrix} 3 & 1 & -2 \\ -1 & 0 & 5 \end{pmatrix} \text{ and } \mathbf{B} = \begin{pmatrix} 2 & 4 \\ -k & 2k \\ 3 & 0 \end{pmatrix}, \text{ where } k \text{ is a constant}$$

(a) find the matrix AB,

(2)

(b) find the exact value of k for which $det(\mathbf{AB}) = 0$

(2)

Summer 2017

Past Paper (Mark Scheme)

www.mystudybro.com
This resource was created and owned by Pearson Edexcel

Mathematics F1

Question Number		Scheme	Notes	Marks
2. (a)	$AB = \left($	$ \begin{pmatrix} 3 & 1 & -2 \\ -1 & 0 & 5 \end{pmatrix} \begin{pmatrix} 2 & 4 \\ -k & 2k \\ 3 & 0 \end{pmatrix} $		
	=	$ \begin{pmatrix} 6 - k - 6 & 12 + 2k - 0 \\ -2 + 0 + 15 & -4 + 0 + 0 \end{pmatrix} $	Obtains a 2 ´ 2 matrix consisting of 4 elements with at least two correct elements which can be simplified or un-simplified	M1
	= ($\begin{pmatrix} -k & 12 + 2k \\ 13 & -4 \end{pmatrix}$	Correct <i>un-simplified</i> matrix for AB	A1 (2)
(b)	{det(AB) = 0 Þ }		
(8)	(-k)(-4) - 13(12 + 2k) = 0	Applies " $ad - bc$ " = 0 on their 2 $$ 2 matrix for AB and solves the resulting equation to give $k =$	M1
	Þ - 22 <i>k</i>	$156 - 26k = 0$ $= 156$ $\frac{156}{22} \text{ or } -\frac{78}{11} \text{ or } -7\frac{1}{11}$	$k = -\frac{156}{22} \text{ or } -\frac{78}{11} \text{ or } -7\frac{1}{11}$ Accept any exact equivalent form for k	A1
			Condone - 7.09	
				(2)
			Question 2 Notes	4
2. (a)	Note	Give A1 (ignore subsequent wor by an incorrect simplified answe	king) for a correct un-simplified answer which is later for	ollowed
(b)	Note	Give M1A1 for sight of the corre		
	Note	Condone the sign error in applying $13(12 + 2k) = 0$ to give $156 + 26k = 0$ (o.e.)		
			$\begin{vmatrix} 2k \\ = 0 > 4k - 156 + 26k = 0 > k = \end{vmatrix}$	
	Note	Give final A0 for -7.0 or -7.1 or	or -7.09 without reference to $-\frac{156}{22}$ or $-\frac{78}{11}$ or $-7\frac{1}{11}$	

■ Past Paper

Leave blank

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

3.	Prove by	induction	that	for <i>n</i>	\in	\mathbb{Z}^+

$$\sum_{r=1}^{n} \frac{2}{r(r+1)(r+2)} = \frac{1}{2} - \frac{1}{(n+1)(n+2)}$$

(5)

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question Number	Scheme		No	otes	Marks
3.	Required to prove by induction the result $\int_{r=1}^{n}$	$\sum_{1}^{\infty} \frac{2}{r(r+1)(r+2)} = \frac{1}{2} - \frac{1}{(n+1)(n+2)}, n \hat{1}$			
Way 1	()(-)		ws either RHS	hows or states LHS = $\frac{1}{3}$ $S = \frac{1}{2} - \frac{1}{(1+1)(2+1)} = \frac{1}{3}$ $\frac{1}{3}$ or RHS = $\frac{1}{2} - \frac{1}{6} = \frac{1}{3}$	B1
	$ \bigcap_{r=1}^{k+1} \frac{2}{r(r+1)(r+2)} = \frac{1}{2} - \frac{1}{(k+1)(k+2)} + \frac{1}{(k+1)(k+2)} $		1)(k + 1 + 2)	Adds the $(k+1)^{th}$ term to the sum of k terms	M1
	$= \frac{1}{2} - \frac{1}{(k+1)(k+2)} + \frac{2}{(k+1)(k+2)(k+3)}$				
	$= \frac{1}{2} - \frac{1}{(k+1)(k+2)} + \frac{2}{(k+1)(k+2)(k+3)}$ $= \frac{1}{2} - \frac{(k+3)}{(k+1)(k+2)(k+3)} + \frac{2}{(k+1)(k+2)(k+3)}$ dependent on the previous M mark Makes $(k+1)(k+2)(k+3)$ a common denominator for their second and third fractions			dM1	
	$= \frac{1}{2} - \frac{1}{(k+2)(k+3)}$ Obtains	$\frac{1}{2}$ - $\frac{1}{(k+1)^2}$		$\frac{1}{2} - \frac{1}{(k+1+1)(k+1+2)}$ by correct solution only	A1
	If the result is <u>true</u> for $n = k$, then it is <u>true</u> to true for $n = 1$, then the		1. As the resu	It has been shown to be	A1 cso
	Final A1 is dependent on all prediction It is gained by candidates conveying either at the end of their solution.	g the ideas	s of all four un	derlined points	(5)
West 2	The MIdMIA1 montes for Alternative We	· 2			5
Way 2	The M1dM1A1 marks for Alternative Way		1)(k + 1 + 2)	Adds the $(k+1)^{th}$ term to the sum of k terms	M1
	$= \frac{(k+1)(k+2)(k+3) - 2(k+3) + 2(2)}{2(k+1)(k+2)(k+3)}$		Makes $2(k+1)$ denominator	n the previous M mark $0(k+2)(k+3)$ a common r for their three fractions	dM1
	$= \frac{k^3 + 6k^2 + 9k + 4}{2(k+1)(k+2)(k+3)} = \frac{(k+1)(k^2 + 5k + 4)}{2(k+1)(k+2)(k+3)}$	$\frac{4)}{3)} = \frac{k}{2(k)}$	$\frac{x^2 + 5k + 4}{(k+2)(k+3)} =$	$\frac{(k+2)(k+3)-2}{2(k+2)(k+3)}$	
	$=\frac{1}{2} - \frac{1}{(k+2)(k+3)}$ Obtains	$\frac{1}{2} - \frac{1}{(k+1)^2}$	$\frac{1}{2(k+3)}$ or	$\frac{1}{2} - \frac{1}{(k+1+1)(k+1+2)}$ by correct solution only	A1

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

		Question 3 Notes					
3.	Note	LHS = RHS by itself or LHS = RHS = $\frac{1}{3}$ is not sufficient for the 1 st B1 mark.					
	Note Way 2	The 1 st A1 can be obtained by e.g. using algebra to show that $\bigcap_{r=1}^{k+1} \frac{2}{r(r+1)(r+2)}$ gives					
		$\frac{(k^2 + 5k + 4)}{2(k+2)(k+3)}$ and by using algebra to show that $\frac{1}{2} - \frac{1}{(k+2)(k+3)}$ also gives $\frac{(k^2 + 5k + 4)}{2(k+2)(k+3)}$					
	Note	Moving from $\frac{1}{2} - \frac{1}{(k+1)(k+2)} + \frac{2}{(k+1)(k+2)(k+3)}$ to $\frac{1}{2} - \frac{1}{(k+2)(k+3)}$					
		with no intermediate working is 2 nd M0 1 st A0 2 nd A0.					
Way 3	The M1d	M1A1 marks for Alternative Way 3					
		$\frac{2}{1)(r+2)} = \frac{1}{2} - \frac{1}{(k+1)(k+2)} + \frac{2}{(k+1)(k+1+1)(k+1+2)}$ Adds the $(k+1)^{th}$ term to the sum of k terms					
	$=\frac{1}{2}-\frac{1}{(k)}$	$\frac{1}{(k+1)(k+2)} + \frac{1}{(k+1)(k+2)} - \frac{1}{(k+2)(k+3)}$ dependent on the previous M mark This step must be seen in Way 3					
	$=\frac{1}{2}-\frac{1}{(k)}$	Obtains $\frac{1}{2} - \frac{1}{(k+2)(k+3)}$ or $\frac{1}{2} - \frac{1}{(k+1+1)(k+1+2)}$ A1					
	,	by correct solution only					

blank

DO NOT WRITE IN THIS AREA

The rectangular hyperbola H has parametric equations

$$x = 4t, \ y = \frac{4}{t}$$

The straight line with equation 3y - 2x = 10 intersects H at the points A and B.

Given that the point A is above the x-axis,

(a) find the coordinates of the point A and the coordinates of the point B.

(5)

(b) Find the coordinates of the midpoint of AB.

(2)

	ı	
	ı	
	ı	
	ı	
	ı	
	ı	
	ı	
	ı	
	ı	
	ı	
	ı	
	ı	
	1	
	1	

DO NOT WRITE IN THIS AREA

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question Number	Scheme		Notes		Marks
4. (a) Way 1	$\left\{x = 4t, y = \frac{4}{t} \implies\right\} 3\left(\frac{4}{t}\right) -$	2(4t) = 10	Substitutes $x = 4t$ and $y = \frac{4}{t}$ into the printed equation to obtain an equation in t only		M1
	$8t^2 + 10t - 12 = 0$ or $4t^2 + 3t^2 + 10t = 0$		Note: E.g. $12 - 8t^2 =$	A correct 3 term quadratic $10t$, $8t^2 + 10t - 12 = 0$ re acceptable for this mark	A1
	$(8t-6)(t+2) = 0 \Rightarrow t = 0$ or $(4t-3)(2t+4) = 0 \Rightarrow t = 0$ or $(4t-3)(t+2) = 0 \Rightarrow t = 0$		Correct method (e.g. f square or applying	on the previous M mark factorising, completing the g the quadratic formula) of olving a 3TQ to find $t =$	dM1
	• $x = 4\left(\frac{3}{4}\right) = 3 \text{ and } y =$ • $x = 4\left(-2\right) = -8 \text{ and } y$	(- /	Correct substitution for <i>t</i> into the g	th the previous M marks at least one of their values given parametric equations at soft corresponding values for $x =$ and $y =$	ddM1
	$A\left(3,\frac{16}{3}\right), B\left(-8,-2\right) \text{ or } A:$	$x = 3, y = \frac{16}{3}$ and	nd $B: x = -8, y = -2$	Identifies the correct coordinates for <i>A</i> and <i>B</i>	A1 cao
()			T1*41	1 22 2 1 1	(5)
(a) Way 2	$x\left(\frac{10+2x}{3}\right) = 16 \qquad \left(\frac{3y}{3}\right)$ $3\left(\frac{16}{x}\right) - 2x = 10 \qquad 3y - 3y$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$k^{-1} 0$, into $3y - 2x = 10$	M1
	to form an equation in either x only of the form an equation in		A correct 3 term quadratic $x^2 = 48$, $3y^2 - 10y = 32$ or	A1	
	e.g. $(2x+16)(x-3) = 0 \bowtie x$ or $(x+8)(x-3) = 0 \bowtie x$ or $(3y-16)(y+2) = 0 \bowtie y$	=	Correct method (e.g. f square or applying	on the previous M mark factorising, completing the g the quadratic formula) of nd either $x =$ or $y =$	dM1
	$x = -8 \Rightarrow y = \frac{16}{-8} = -2$	dependent on both the previous M marks. Correct substitution of at least one of their values for x or y into either $3y - 2x = 10$ of their rearranged $3y - 2x = 10$ or $y = \frac{k}{x}$ or $x = \frac{k}{y}$, $k = 10$, are obtains <i>two sets</i> of corresponding values for $x =$ and $y = 10$		nto either $3y - 2x = 10$ or $\frac{k}{x}$ or $x = \frac{k}{y}$, $k^{-1} 0$, and	ddM1
	$A\left(3,\frac{16}{3}\right), B\left(-8,-2\right) \text{ or } A:$	$x = 3, y = \frac{16}{3}$ and	nd $B: x = -8, y = -2$	Identifies the correct coordinates for <i>A</i> and <i>B</i>	A1 cao
			I Iooo 4	hair (v. v.) and (m. v.)	(5)
(b)	$\left(\frac{3+(-8)}{2},\frac{\frac{16}{3}+(-2)}{2}\right);=\left(-\frac{1}{2},1$	$\left(\frac{5}{2},\frac{5}{3}\right)$		heir (x_1, y_1) and (x_2, y_2) apply $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$ o.e.	M1;
				Correct answer	A1
					(2)
					7

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

		Question 4 Notes						
4. (a)	SC	If the two previous M marks have been gained then award Special Case ddM1 for finding						
		their correct points by writing either $x = 3$, $y = \frac{16}{3}$ or $x = -8$, $y = -2$ or $\left(3, \frac{16}{3}\right)$ or $\left(-8, -2\right)$						
	Note	A decimal answer of e.g. $A(3, 5.33)$, $B(-8, -2)$ (without a correct exact answer) is 2^{nd} A0						
	Note	Writing coordinates the wrong way round						
		E.g. writing $x = 3$, $y = \frac{16}{3}$ and $x = -8$, $y = -2$ followed by $A\left(\frac{16}{3}, 3\right)$, $B\left(-8, -2\right)$ is 2^{nd} A0						
	Note	Imply the dM1 mark for writing down the correct roots for their quadratic equation. E.g.						
		• $2x^2 + 10x - 48 = 0$ or $x^2 + 5x - 24 = 0$ or $\frac{2}{3}x^2 + \frac{10}{3}x = 16 \rightarrow x = 3, -8$						
		• $\frac{3}{2}y^2 - 5y - 16 = 0$ or $3y^2 - 10y - 32 = 0 \rightarrow y = \frac{16}{3}, -2$						
		• $8t^2 + 10t = 12$ or $4t^2 + 5t - 6 = 0 \rightarrow t = \frac{3}{4}, -2$						
	Note	For example, give dM0 for						
		• $8t^2 + 10t = 12$ or $4t^2 + 5t - 6 = 0 \rightarrow t = \frac{1}{4}$, -2 [incorrect solution]						
		with no intermediate working.						
	Note	You can also imply the 1^{st} A1 dM1 marks for either						
		• $x\left(\frac{10+2x}{3}\right) = 16 \text{ or } 3\left(\frac{16}{x}\right) - 2x = 10 \to x = 3, -8$						
		• $\left(\frac{3y-10}{2}\right)y = 16 \text{ or } 3y - 2\left(\frac{16}{y}\right) = 10 \rightarrow y = \frac{16}{3}, -2$						
		• $3\left(\frac{4}{t}\right) - 2(4t) = 10 \to x = 3, -8$						
		• $3\left(\frac{4}{t}\right) - 2(4t) = 10 \rightarrow y = \frac{16}{3}, -2$						
		with no intermediate working.						
	Note	You can imply the 1st A1 dM1 ddM1 marks for either						
		• $x\left(\frac{10+2x}{3}\right) = 16 \text{ or } 3\left(\frac{16}{x}\right) - 2x = 10 \rightarrow x = 3, -8 \text{ and } y = \frac{16}{3}, -2$						
		• $3\left(\frac{4}{t}\right) - 2(4t) = 10 \rightarrow x = 3, -8 \text{ and } y = \frac{16}{3}, -2$						
		with no intermediate working.						
		You can then imply the final A1 mark if they correctly identify the correct pairs of values or						
		coordinates which relate to the point <i>A</i> and the point <i>B</i> .						
	Note	Give 2 nd A0 for a final answer of both $A\left(3, \frac{16}{3}\right)$, $B\left(-8, -2\right)$ and $A\left(-8, -2\right)$, $B\left(3, \frac{16}{3}\right)$,						
(b)	Note	A decimal answer of e.g. (-2.5, 1.67) (without a correct exact answer) is A0						
	Note	Allow A1 for $\left(-\frac{5}{2}, \frac{10}{6}\right)$ or $\left(-2\frac{1}{2}, -1\frac{2}{3}\right)$ or exact equivalent.						

blank

DO NOT WRITE IN THIS AREA

Past Paper

 $f(x) = 30 + \frac{7}{\sqrt{x}} - x^5,$ x > 05.

The only real root, α , of the equation f(x) = 0 lies in the interval [2, 2.1].

(a) Starting with the interval [2, 2.1], use interval bisection twice to find an interval of width 0.025 that contains α .

(4)

(b) Taking 2 as a first approximation to α , apply the Newton-Raphson process once to f(x) to find a second approximation to α , giving your answer to 2 decimal places.

(5)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question Number			Scheme				Notes		Marks
5.	Given f(x	c) = 30	$0 - \frac{7}{\sqrt{x}} - x^5$, x > 0 and ro	ot of f	(x) = 0 lies in t	he interval [2, 2	.1]	
(a)	f(2) = 2.9	9497	or f(2.1) =	- 6.0105	Attempts to evaluate <i>at least one</i> of $f(2)$ <i>or</i> $f(2.1)$ and evaluates $f(2.05)$			M1	
Way 1	f(2.05) =	- 1.31	60			, , , , ,	`	runcated) to 1 sf runcated) to 1 sf	A1
	f(2.025) =	=						revious M mark and not $f(2.075)$	dM1
	f(2.025) = so interval or (2.025)	l is (2.	.025, 2.05)	Allow a mixture of "ends". Do not allow incorrect statements such as $2.05 < a < 2.025$ or $(2.05, 2.025)$ or $2.05 - 2.025$ unless they are recovered. Ignore the subsequent iteration of $f(2.0375)$		Al			
				candidates only indicate the sign of f and not its value. M marks can still score as defined but not the A marks.		(4)			
(a)		Com	Common approach in the form of a table (use the mark scheme above)						
Way 2	а		f(a)	b		f(<i>b</i>)	$\frac{a+b}{2}$	$f\left(\frac{a+b}{2}\right)$	
	2		2.9497			- 6.0105	2.05	-1.3160	
	2	SC	2.9497			-1.3160	2.025 marks in part (0.86846	
		50) Interval 15						
(b)	f((x) =	$-\frac{7}{2}$	$-\frac{3}{2} - 5x^4$			where	$\stackrel{\cdot}{e} A$ and B are not	or $-x^5 \rightarrow \pm Bx^4$ n-zero constants.	M1
·	1 (%)	2"	34	At least one	of eithe	er $-\frac{7}{2}x^{-\frac{3}{2}}$ or	$-5x^4$ simplified	or un-simplified	A1
					C			or un-simplified	A1
	$\left\{\alpha \simeq 2 - \right.$	$\frac{f(2)}{f'(2)}$	$\Rightarrow \alpha \simeq 2 -$	2.94974746 -81.237436	87	Valid a	ttempt at Newto	revious M mark n-Raphson using f(2) and $f(2)$	dM1
	${a = 2.03}$	863101	} Þ <i>a</i>	= 2.04 (2 dp)		2.04 on th	previous marks heir first iteration equent iterations)	A1 cso cao
	Correct	differ					4 scores full man		(E)
			Correct an	swer with <u>no</u>	workii	ng scores no m	arks in part (b)		(5)
					Que	estion 5 Notes			
5. (a)	Note	Give	2 nd M0 for	evaluating bot		025) and f(2.0°	75)		
	Note	Do n	ot allow "in	terval = f(2.0)	25) to	f(2.05)" unles	s recovered.		
	Note								
		at led	ast one of ei	ther $f(2)$ or	f(2.1)	is M0A0M0A0			

Summer 2017

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Mathematics F1

		Question 5 Notes Continued
5. (b)	Note	Incorrect differentiation followed by their estimate of a with no evidence of applying the
		NR formula is final dM0A0.
	Final	This mark can be implied by applying at least one correct <i>value</i> of either $f(2)$ or $f(2)$
	dM1	in $2 - \frac{f(2)}{f(2)}$. So just $2 - \frac{f(2)}{f(2)}$ with an incorrect answer and no other evidence
		scores final dM0A0.
	Note	You can imply the M1A1A1 marks for algebraic differentiation for either
		• $f^{\emptyset}(2) = -\frac{7}{2}(2)^{-\frac{3}{2}} - 5(2)^4$
		• $f(2)$ applied correctly in $\alpha \simeq 2 - \frac{30 - 7(2)^{-\frac{1}{2}} - (2)^5}{-\frac{7}{2}(2)^{-\frac{3}{2}} - 5(2)^4}$
		$-\frac{7}{2}(2)^{-\frac{1}{2}}-5(2)^4$
	Note	Differentiating INCORRECTLY to give $f(x) = -\frac{7}{2}x^{-2} - 5x^4$ leads to
		$\alpha \approx 2 - \frac{2.949747468}{-81.75} = 2.036082538 = 2.04 (2 dp)$
		This response should be awarded M1A1A0M1A0

(a) Use the standard results for $\sum_{r=1}^{n} r^2$ and for $\sum_{r=1}^{n} r^3$ to show that, for all positive integers n,

Leave blank

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

$$\sum_{r=1}^{n} r^{2}(r+1) = \frac{n}{a}(n+1)(n+2)(3n+b)$$

where a and b are integers to be found.

(4)

(b) Hence find the value of

$$\sum_{r=25}^{49} (r^2(r+1)+2) \tag{4}$$

-	
	_
	_
-	
-	
-	
	_
	_
	_
	_

Summer 2017 www.mystudybro.com
Past Paper (Mark Scheme) This resource was created and owned by Pearson Edexcel

Question Number	Scheme		Notes	Marks
6. (a)	$ \bigcap_{r=1}^{n} r^{2}(r+1) = \bigcap_{r=1}^{n} r^{3} + \bigcap_{r=1}^{n} r^{2} $	{No	te: Let $f(n) = \frac{1}{12}n(n+1)(n+2)(3n+1)$ or their answer to part (a).	
	$= \frac{1}{4}n^2(n+1)^2 + \frac{1}{6}n(n+1)(2n+1)$		mpts to expand $r^2(r+1)$ and attempts to at least one correct standard formula into their resulting expression.	M1
			Correct expression (or equivalent)	A1
	$= \frac{1}{12}n(n+1)[3n(n+1) + 2(2n+1)]$		dependent on the previous M mark tempt to factorise at least $n(n+1)$ having sted to substitute both standard formulae.	dM1
	$= \frac{1}{12}n(n+1)[3n^2 + 7n + 2]$		{this step does not have to be written}	
	$= \frac{1}{12}n(n+1)(n+2)(3n+1)$		Correct completion with no errors. Note: $a = 12, b = 1$	A1 cso
				(4)
(b) Way 1	$\left\{ \sum_{r=25}^{49} r^2(r+1) \right\}$		Attempts to find either f(49) - f(24) or f(49) - f(25). This mark can be implied.	M1
	$= \left(\frac{1}{12}(49)(50)(51)(148)\right) - \left(\frac{1}{12}(24)(25)\right)$ $\left\{ = 1541050 - 94900 = 1446150 \right\}$)(26)(73)	Correct numerical expression for f(49) - f(24) which can be simplified or un-simplified. Note: This mark can be implied by seeing 1446150	A1
	$\left\{ \sum_{r=25}^{49} \left(r^2(r+1) + 2 \right) \right\}$ = "1446150" + 25(2); = 1446200		25(2) or equivalent to their $\bigcap_{r=25}^{49} r^2(r+1)$ ar evidence that $\bigcap_{r=25}^{49} 2 = 2(49) - 2(24)$ or 50	M1
			1446200	A1 cao
				(4)
(b) Way 2	$\left\{ \sum_{r=25}^{49} \left(r^2(r+1) + 2 \right) \right\} = \left(\frac{1}{12} (49)(50)(51)(14) \right)$ $= (1541050 + 98) - (98)(14)(14)(150)(14) = (1541050 + 98) - (1541050 + 98) = (1541000 + 98) = (1541000 + 98) = (15410000 + 98) = (15410000 + 98) = (154100000 + 98) = (1$		$\left(\frac{\frac{1}{12}(24)(25)(26)(73) + 2(24)}{12}\right)$ = 1541148 - 94948 = 1446200	
	Attempts to find either			M1
	Correct numerical expression for f (49)			1411
	Note: This mark can be implied by (•	A1
	Adds 50 or equivalent to their $\bigcap_{r=25}^{49} r^2(r)$		r = 25	M1
	Note: This mark can be implied by		$-(\underline{} + \underline{2(24)})$ or 1541148 - 94948	
		1446200		A1 cao
				(4)
				8

www.mystudybro.comThis resource was created and owned by Pearson Edexcel Past Paper (Mark Scheme)

Mathematics F1

Question Number		Scheme	Notes	Marks	
6. (b) Way 3	$= \begin{pmatrix} \\ \\ \\ \\ \\ \end{pmatrix}$ $= \begin{pmatrix} 1 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\begin{aligned} & (r+1)+2) \end{aligned} = \sum_{r=25}^{49} r^3 + \sum_{r=25}^{49} r^2 + \sum_{r=25}^{49} 2 \\ & (\frac{1}{4}(49)^2(50)^2 - \frac{1}{4}(24)^2(25)^2) + (\frac{1}{6}(49)(50)(9)^2) \\ & (\frac{500625 - 90000}{4}) + (40425 - 4900) + \frac{50}{4} \\ & (\frac{1}{4}(49)^2(50)^2 + \frac{1}{6}(49)(50)(99) + 2(49)) - (\frac{1}{4}(49)^2(50)^2 + \frac{1}{6}(49)(50)(99) $			
	Correct			M1 A1	
	Correct numerical expression for $f(49) - f(24)$ which can be simplified or un-simplified. A1 Adds 50 or equivalent to their $\stackrel{49}{\circ}$ $r^2(r+1)$ or clear evidence that $\stackrel{49}{\circ}$ $2 = 2(49) - 2(24)$ or 50 M1				
		r=25 1446200	r = 25	A1 cao	
				(4)	
		Questio	n 6 Notes		
6. (a)	Note	Applying e.g. $n = 1$, $n = 2$ to the printed entropy to give $a = 12$, $b = 1$ is M0A0M0A0	quation without applying the standard for	rmulae	
	Alt 1	Alt Method 1: Using $\frac{1}{4}n^4 + \frac{5}{6}n^3 + \frac{3}{4}n^2 + \frac{3}{4}$	$\frac{1}{6}n \circ \frac{3}{6}n^4 + \frac{(9+b)}{6}n^3 + \frac{(6+3b)}{6}n^2 + \frac{2b}{6}$	n o.e.	
	dM1	Equating coefficients to find both $a = \dots$ a			
	A1 cso	Finds $a = 12$, $b = 1$ and demonstrates the id	entity works for all of its terms.		
	Alt 2	Alt Method 2: $\frac{1}{4}n^2(n+1)^2 + \frac{1}{6}n(n+1)(2)$	$(n+1) \circ \frac{1}{a}n(n+1)(n+2)(3n+b)$		
	dM1	Substitutes $n = 1$, $n = 2$, into this identity of			
		and at least one of $a = 12$, $b = 1$			
	A1	Finds $a = 12, b = 1$			
	Note	Allow final dM1A1 for $\frac{1}{4}n^4 + \frac{5}{6}n^3 + \frac{3}{4}n^2$			
		or $\frac{1}{12}(3n^4 + 10n^3 + 9n^2 + 2n) \rightarrow \frac{1}{12}n(n)$	+ 1)(n + 2)(3n + 1) 110m no incorrect work	ang.	

Summer 2017 www.mystudybro.com

Past Paner (Mark Scheme) This resource was created and owned by Pearson Edexcel

		Question 6 Notes Continued	
6. (b)	Note	Give 1 st M1 1 st A0 for applying $f(49) - f(25)$. i.e. $1541050 - 111150 = 1429900$	
-	Note	You cannot follow through their incorrect answer from part (a) for the 1 st A1 mark.	
	Note	Give M1A0M1A0 for applying $[f(49) + 2(49)] - [f(25) + 2(24)]$	
		i.e. 1541148 - 111198 {= 1429950}	
	Note	Give M1A0M0A0 for applying $[f(49) + 2(49)] - [f(25) + 2(25)]$	
		i.e. 1541148 - 111200 {= 1429948}	
-	Note	Give 1 st M0 1 st A0 for applying $(49)^2(50) - (24)^2(25) = 120050 - 14400 = 105650$	
	Note	Give 1 st M0 1 st A0 for applying $(49)^2(50) - (25)^2(26) = 120050 - 16250 = 103800$	
	Note	Give M0A0M0A0 for listing individual terms. e.g. 16250 + 18252 + + 112896 + 120050 = 1446200	
-	Note	Give 2 nd M0 for lack of bracketing in	
		$\frac{1}{12}$ (49)(50)(51)(148) + 2(49) - $\frac{1}{12}$ (24)(25)(26)(73) + 2(24) unless recovered	
-	Note	Give M0A0M0A0 for writing down 1446200 without any working.	
	Note	Applying $f(49) - f(24)$ for $\frac{1}{4}n(n+1)(n+2)(3n+1)$ is $4623150 - 284700 = 4338450$	0
		is 1 st M1 1 st A0	

blank

7.

$$f(z) = z^4 + 4z^3 + 6z^2 + 4z + a$$

where a is a real constant.

Given that 1 + 2i is a complex root of the equation f(z) = 0

(a) write down another complex root of this equation.

(1)

- (b) (i) Hence, find the other roots of the equation f(z) = 0
 - (ii) State the value of a.

(7)

Summer 2017 www.mystudybro.com
Past Paper (Mark Scheme) This resource was created and owned by Pearson Edexcel

Question Number		Scheme		Notes	Marks	S
7.	$f(z) = z^4$	$x^2 + 4z^3 + 6z^2 + 4z + a$, a i	s a real const	ant. $z_1 = 1 + 2i$ satisfies $f(z) = 0$		
(a)		$\left\{z_2 = \right\} 1 - 2i$		1 - 2i	B1	
						(1)
(b)(i)				Attempt to expand $(z - (1+2i))(z - (1-2i))$		
				or $(z - (1+2i))(z - (\text{their complex } z_2))$		
				ny valid method to establish a quadratic factor	M1	
		$z^2 - 2z + 5$	e.	g. $z = 1 \pm 2i \Rightarrow z - 1 = \pm 2i \Rightarrow z^2 - 2z + 1 = -4$		
				or sum of roots 2, product of roots 5		
				to give $z^2 \pm (\text{their sum})z + (\text{their product})$	4.1	
				$\frac{z^2 - 2z + 5}{\text{Attempts to find the other quadratic factor.}}$	A1	
			e a usina la	Attempts to find the other quadratic factor. ong division to obtain either $z^2 \pm kz +, k^{-1}$		
			c.g. using i	or $z^2 \pm az + b$, $b^{-1}0$, a can be 0	3.61	
	$f(x) = (z^2 - 2z + 5)(z^2 + 6z + 13)$		f		M1	
				ng e.g. $f(z) = (z^2 - 2z + 5)(z^2 \pm kz \pm c), k^{-1}0$		
			or $f(z) = (z^2 - 2z + 5)(z^2 \pm az \pm b)$, $b^{-1}0$, a can be 0		4.1	
	2 -	12 0 5		$z^2 + 6z + 13$	A1	
	$\left\{z^2 + 6z + 13 = 0 \triangleright\right\}$					
	Either	[dependent on only the previous M mark		
	• z	$z = \frac{-6 \pm \sqrt{36 - 4(1)(13)}}{2(1)}$		Correct method of applying the quadratic	dM1	
		, ,	2TO - 11 - 1 - 2nd 1 - 1 - 6 - 1 - 1			
	,	$(z+3)^2 - 9 + 13 = 0 \triangleright z$	=	•		
	$\left\{z=\right\}-3$	3 + 2i, -3 - 2i		-3 + 2i and -3 - 2i	A1	
('')	() (5				D.1	(6)
(ii)	$\{a=\}$ 65			65 or $a = 65$ stated anywhere in (b)	ВІ	(1)
						(1) 8
				uestion 7 Notes		
7. (b)(i)	Note			- 3 - 2i is M0A0M0A0M0A0.		
	Note	You can assume $x \circ z$		-		
	Note			z = -3 + 2i, $-3 - 2i$ with no intermediate wor	king.	
	Note			n quadratic factor can be factorised then		
	Note	-		actorisation leading to $z =$		
	Note			ig a method of factorising to solve their 3TQ.		
	Note	Formula:	iaik iof soivi	ng a 3TQ, " $az^2 + bz + c = 0$ "		
			ect formula (with values for a , b and c)		
		Completing the squar				
		$\left(z\pm\frac{b}{2}\right)^2\pm q\pm c=0,$		g to $z =$		

■ Past Paper

The parabola C has cartesian equation $y^2 = 36x$. The point $P(9p^2, 18p)$, where p is a positive constant, lies on C.

Leave blank

(a) Using calculus, show that an equation of the tangent to C at P is

$$py - x = 9p^2 \tag{4}$$

This tangent cuts the directrix of C at the point A(-a, 6), where a is a constant.

(b) Write down the value of a.

(1)

(c) Find the exact value of p.

(3)

(d) Hence find the exact coordinates of the point P, giving each coordinate as a simplified surd.

(3)

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question Number	Scheme		Notes	Marks	
8.	$C: y^2 = 36x, \ P(9p^2, 18p)$ lies on C, where p is a constant.				
(a)	$y = 6x^{\frac{1}{2}} \triangleright \frac{dy}{dx} = \frac{1}{2}(6)x^{-\frac{1}{2}} =$	$\frac{3}{\sqrt{x}}$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \pm k x^{-\frac{1}{2}}$		
	$y^2 = 36x \triangleright 2y \frac{\mathrm{d}y}{\mathrm{d}x} = 36$		$py \frac{dy}{dx} = q$ their $\frac{dy}{dt} = \frac{1}{\frac{dx}{dt}}$		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \cdot \frac{\mathrm{d}t}{\mathrm{d}x} = 18 \left(\frac{1}{18p}\right)$		their $\frac{dy}{dt} \cdot \frac{1}{\text{their } \frac{dx}{dt}}$		
	So at P , $m_T = \frac{1}{p}$		p	A1	
	$y - 18p = \frac{1}{p}(x - 9p^2)$	Correc	et straight line method for an equation of a tangent where $m_T \begin{pmatrix} 1 & m_N \end{pmatrix}$ is found by using calculus.	M1	
	or $y = \frac{1}{p}x + 9p$		Note: m_T must be a function of p		
	leading to $py - x = 9p^2$ (*)	Correct solution only			
(b)			<i>a</i> = 9		(4)
	(Directrix: $x = -9 \triangleright$) $a = 9$		or $a = 9$ stated anywhere in this question		
(c)	Tangent goes through $(-a,6)$	~ .			
	$6p + 9 = 9p^2$		Substitutes their value $x = -"a"$ or their value $x = "a"$ and $y = 6$ into either $py - x = 9p^2$ or $py - x = -9p^2$		
	$9p^2 - 6p - 9 = 0$ or $3p^2 - 2p - 3 = 0$	= 0			
	E.g. $p = \frac{6 \pm \sqrt{36 - 4(9)(-9)}}{2(9)}$		dependent on the previous M mark Correct method of solving their 3TQ	dM1	
	{as $p > 0$ } $p = \frac{1 + \sqrt{10}}{3}$		$p = \frac{1 + \sqrt{10}}{3}$ or $\frac{6 + \sqrt{360}}{18}$ or $\frac{6 + 6\sqrt{10}}{18}$ etc.	A1	
	Note: Give A0 for giving two values for p as their answer to part (c)				(3)
(d)	$x = 9\left(\frac{1+\sqrt{10}}{3}\right)^2, \ y = 18\left(\frac{1+\sqrt{10}}{3}\right)^2$		Uses a real value of p , which is the result of substituting $(\pm a, 6)$ into $py - x = \pm 9p^2$, and substitutes p into at least one of either $x = 9p^2$ or $y = 18p$	M1	
	$(11 + 2\sqrt{10}, 6 + 6\sqrt{10})$ or $(11 + 2\sqrt{10}, 6(1 + \sqrt{10}))$		Either $x = 11 + 2\sqrt{10}$ or $y = 6 + 6\sqrt{10}$ or $y = 6\left(1 + \sqrt{10}\right)$	A1	
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		Condone $x =, y =$	A1	
	Note: Give 2 nd A0 for two sets of coordinates for <i>P</i>				(3) 11

9.

$$z = \frac{1}{5} - \frac{2}{5}i$$

(a) Find the modulus and the argument of z, giving the modulus as an exact answer and giving the argument in radians to 2 decimal places.

(3)

Given that

$$zw = \lambda i$$

where λ is a real constant,

(b) find w in the form a + ib, where a and b are real. Give your answer in terms of λ .

(3)

- (c) Given that $\lambda = \frac{1}{10}$
 - (i) find $\frac{4}{3}(z+w)$,
 - (ii) plot the points A, B, C and D, representing z, zw, w and $\frac{4}{3}(z+w)$ respectively, on a single Argand diagram.

(4)

DO NOT WRITE IN THIS AREA

Summer 2017 www.mystudybro.com
Past Paper (Mark Scheme) This resource was created and owned by Pearson Edexcel

<u> </u>	(Mark Scheme) This resource was created at	realed and owned by Fearson Edexcer		
Question Number	Scheme	Notes	Marks	
9. (a)	$\left\{ z = \right\} \sqrt{\left(\frac{1}{5}\right)^2 + \left(-\frac{2}{5}\right)^2}; = \frac{\sqrt{5}}{5} \text{ or } \frac{1}{\sqrt{5}} \text{ or } \sqrt{\frac{1}{5}}$	$\sqrt{\left(\frac{1}{5}\right)^2 + \left(-\frac{2}{5}\right)^2} \text{ or } \sqrt{\left(\frac{1}{5}\right)^2 + \left(\frac{2}{5}\right)^2}$ which can be implied.		
	$\left\{\arg z = \arctan(-2) = -1.107148718\right\} = -1.1$	Correct exact answer		
	$\tan z = \arctan(-z) = -1.10/148/18$ $\int = -1.1$	-1.11 cao or 5.18 cao	B1 (2)	
(b) Way 1	$w = \frac{/i}{z} = \frac{/i}{(\frac{1}{5} - \frac{2}{5}i)}$ or $w = \frac{5/i}{5z} = \frac{5/i}{(1 - 2i)}$	Correct method of making w the subject and substituting for z	(3) M1	
	$= \frac{\frac{i(\frac{1}{5} + \frac{2}{5}i)}{(\frac{1}{5} - \frac{2}{5}i)(\frac{1}{5} + \frac{2}{5}i)}}{\frac{1}{25} + \frac{4}{25}} = \frac{\frac{5}{i}(1 + 2i)}{(1 - 2i)(1 + 2i)}$ $= \frac{-\frac{2}{5} + \frac{1}{5}/i}{\frac{1}{25} + \frac{4}{25}} = \frac{-10/+5/i}{1 + 4}$	dependent on the previous M mark Multiplies numerator and denominator of right hand side by $(\frac{1}{5} + \frac{2}{5}i)$ or $(1 + 2i)$ to give an expression in terms of / which contains a real denominator	dM1	
	= -2/ + /i $= -2/ + /i$	-2/ +/i or /i -2/	A1	
	i i		(3)	
(b) Way 2	$ (\frac{1}{5} - \frac{2}{5}i)(a + bi) = /i \Rightarrow \frac{1}{5}a + \frac{1}{5}bi - \frac{2}{5}ai + \frac{2}{5}b = /i $ Substitutes z and w into $zw = /i$, expands zw and attempts to equate either the real part of the imaginary part of the resulting equation.			
	dependent on the previous M mark $\frac{1}{5}a + \frac{2}{5}b = 0, -\frac{2}{5}a + \frac{1}{5}b = 1$ Obtains an equation in terms of a and b and obtains a second equation in terms of a, b and / and solves them simultaneously to give at least one of $a =$ or $b =$			
	$\{a = -2/, b = / \triangleright\} w = -2/ + /i$ $-2/ + /i$ or $/i - 2/$			
			(3)	
	[44] 4[1 2:] [2 1:] 2:	Substitutes z, / and their w into $\frac{4}{3}(z+w)$	M1	
(c)	$\left\{ \frac{4}{3}(z+w) = \right\} \frac{4}{3} \left(\left(\frac{1}{5} - \frac{2}{5}i \right) + \left(-\frac{2}{10} + \frac{1}{10}i \right) \right); = -\frac{2}{5}i$	$-\frac{2}{5}i$ or $-\frac{6}{15}i$ or $-0.4i$ o.e.	A1	
		3 13	(2)	
(d)	$C(-\frac{1}{5},\frac{1}{10})$ O Re	plots $(\frac{1}{5}, -\frac{2}{5})$ in quadrant 4 plots $(0, \frac{1}{10})$ on the positive imaginary axis plots $(-\frac{1}{5}, \frac{1}{10})$ in quadrant 2 plots $(0, -\frac{2}{5})$ on the negative imaginary axis Satisfies at least two of the four criteria	B1	
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	cale or coordinates stated. All points (arrows) must be in the correct positions relative to each other.	B1 (2)	
			10	

Summer 2017

Mathematics F1

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

	Question 9 Notes			
9. (a)	Note	M1 can be implied by awrt 0.45 or a truncated 0.44		
	Note	Give A0 for 0.4472 without reference to $\frac{\sqrt{5}}{5}$ or $\frac{1}{\sqrt{5}}$ or $\sqrt{\frac{1}{5}}$		
	Note	Give B0 for -1.11 followed by a final answer of 1.11		
(b)	Note	Be aware that $\frac{1}{(\frac{1}{5} - \frac{2}{5}i)} = 1 + 2i$		

Leave blank

DO NOT WRITE IN THIS AREA

Past Paper

10. In your answers to this question, the elements of each matrix should be expressed in exact form in surds where necessary.

The transformation U, represented by the 2×2 matrix P, is a rotation through 45° anticlockwise about the origin.

(a) Write down the matrix **P**.

(1)

The transformation V, represented by the 2×2 matrix Q, is a rotation through 60° anticlockwise about the origin.

(b) Write down the matrix **Q**.

(1)

The transformation U followed by the transformation V is the transformation T. The transformation T is represented by the matrix \mathbf{R} .

(c) Use your matrices from parts (a) and (b) to find the matrix **R**.

(3)

(d) Give a full geometric description of T as a single transformation.

(2)

(e) Deduce from your answers to parts (c) and (d) that $\sin 75^\circ = \frac{1+\sqrt{3}}{2\sqrt{2}}$ exact value of cos 75°, explaining your answers fully.

(2)

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question Number	Scheme		Notes		Marks	
10. (a)	$\begin{pmatrix} \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{pmatrix}$	$\frac{\sqrt{2}}{2} \sqrt{\frac{1}{2}} \text{or} \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \right) $ $\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} $	Co	Correct matrix which is expressed in exact surds		B1
(b)		$\frac{\sqrt{3}}{2}$ $\frac{1}{2}$	Correct matrix which is expressed in exact surds			B1 (1)
(c)	$\begin{cases} a & b \\ c & d \end{cases}$		$= \begin{cases} \left(\frac{1}{2} - \frac{\sqrt{3}}{2}\right) \left(\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}\right) \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \right) \left(\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}\right) \\ = \dots \end{cases}$ Multiplies their matrix from part (a) by their matrix from part (b) [either way round] and finds at least one element in the resulting matrix		M1	
	$\sqrt{\sqrt{2}}$	$\frac{\sqrt{6}}{\sqrt{6}}$ $\frac{-\sqrt{2}-\sqrt{6}}{\sqrt{6}}$ $\frac{1-\sqrt{3}}{\sqrt{6}}$ $\frac{-1}{\sqrt{6}}$	$\left \frac{-\sqrt{3}}{\sqrt{2}}\right $	At	least 3 correct exact elements	A1
	$= \left\lfloor \frac{4}{\sqrt{2} + 4} \right\rfloor$	$\frac{\sqrt{6}}{\sqrt{6}} = \frac{-\sqrt{2} - \sqrt{6}}{4}$ or $\frac{1 - \sqrt{3}}{2\sqrt{2}} = \frac{-1}{2}$ $\frac{\sqrt{5}}{\sqrt{6}} = \frac{\sqrt{2} - \sqrt{6}}{4}$ or $\frac{\sqrt{3} + 1}{2\sqrt{2}} = \frac{1}{2}$	$\frac{2\sqrt{2}}{2\sqrt{2}}$		Note: Allow multiplication either way round	A1
					Rotation (condone turn)	(3)
(d)	Rotation about $(0, 0)$ and about $(0, 0)$ or about O or about the origin				B1	
	105 deg	grees (anticlockwise) 105 degrees or $\frac{7\rho}{12}$ (anticlockwise)		B1 o.e.		
		or 255 degrees clockwise or $\frac{17p}{12}$ clockwise				
		Note: Give 2 nd I Note: Give B0B0 for				(2)
(e)	Either	THOSE SITE BODO TO	Comer	That ions of trains		
		$\sin 75^\circ = \sin 105^\circ = \frac{\sqrt{3} + 1}{2\sqrt{2}}$ $\sin 75^\circ = \sin 105^\circ = \frac{\sqrt{2} + \sqrt{6}}{4} = \frac{\sqrt{3} + 1}{2\sqrt{2}}$ dependent on the 1 st A mark in part (c) and states $\sin 75^\circ = \sin 105^\circ = \frac{\sqrt{3} + 1}{2\sqrt{2}}$		dB1		
			2 4 2		States $\cos 75^\circ = -\cos 105^\circ$	
	cos75°	$= -\cos 105^{\circ} = -\left(\frac{1-\sqrt{3}}{2\sqrt{2}}\right) \text{ or } \frac{\sqrt{3}-1}{2\sqrt{2}} \text{ or } \frac{\sqrt{6}-\sqrt{2}}{4} $ States $\cos 75^{\circ} = -\cos 105^{\circ}$ and deduces a correct exact value for $\cos 75^{\circ}$		B1		
						(2)
		Question 10 Notes			9	
10. (e)	ALT 1	Comparing their matrix found in part (c) with a correct $\begin{pmatrix} -\cos 75 & -\sin 75 \\ \sin 75 & -\cos 75 \end{pmatrix}$				
		(representing a rotation 105° anti-clockwise about O) gives				
		$\sin 75^\circ = \frac{\sqrt{3} + 1}{2\sqrt{2}}$ (with the 1 st A mark scored in part (c))			B1	
		$\cos 75^\circ = -\left(\frac{1-\sqrt{3}}{2\sqrt{2}}\right) \text{ or } \frac{\sqrt{3}-1}{2\sqrt{2}} \text{ or } \frac{\sqrt{6}-\sqrt{2}}{4}$			B1	
					(2)	