www.mystudybro.com

Mathematics F1

WFM01

Past Paper

This resource was created and owned by Pearson Edexcel

Write your name here Surname	Other na	mes
Pearson Edexcel	Centre Number	Candidate Number
Further Pu	ıre	`
Mathemat Advanced/Advance		
	d Subsidiary	Paper Reference WFM01/01

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B). Coloured pencils and highlighter pens must not be used.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information

- The total mark for this paper is 75.
- The marks for each question are shown in brackets
 use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

www.mystudybro.com

Past Paper

This resource was created and owned by Pearson Edexcel

WFM01

Leave blank

1.
$$f(x) = 3x^2 - \frac{5}{3\sqrt{x}} - 6, \quad x > 0$$

The single root α of the equation f(x) = 0 lies in the interval [1.5, 1.6].

(a) Taking 1.5 as a first approximation to α , apply the Newton-Raphson process once to f(x) to obtain a second approximation to α . Give your answer to 3 decimal places.

(b) Use linear interpolation once on the interval [1.5, 1.6] to find another approximation to α . Give your answer to 3 decimal places.

(3)

2

Winter 2018 www.mystudybro.com
Past Paper (Mark Scheme) This resource was created and owned by Pearson Edexcel

WFM01

January 2018 WFM01 Further Pure Mathematics F1 Mark Scheme

Question Number	Scheme			Notes		Marks
1.	Given $f(x) = 3x^2 - \frac{5}{3\sqrt{x}} - 6$, $x > 0$ and root, α , of $f(x) = 0$ lies in the interval [1.5, 1.6]					
(a)	$f'(x) = 6x + \frac{5}{6}x^{-\frac{3}{2}}$	At le	east one o	of either $3x^2$	$\rightarrow \pm Ax$ or $-\frac{5}{3\sqrt{x}} \rightarrow \pm Bx^{-\frac{3}{2}}$	M1
	6	G . 116	20		A and B are non-zero constants.	
					be simplified or un-simplified	A1
	$\left\{\alpha \simeq 1.5 - \frac{f(1.5)}{f'(1.5)}\right\} \Rightarrow \alpha \simeq 1$	$1.5 - \frac{-0.6108276}{9.4536092}$	5349 12	Valid atte	dent on the previous M mark empt at Newton-Raphson using ir values of $f(1.5)$ and $f'(1.5)$	dM1
	$\{\alpha = 1.564613167\} \Rightarrow \alpha =$	= 1.565 (3 dp)			1.565 on their first iteration	A1 cso
	Correct differentiation for	ollowed by a corr	rect answ		nore any subsequent iterations) scores full marks in part (a)	
		nswer with <u>no</u> wo				(4)
(b)	Either		8		· · · · · · · · · · · · · · · · · · ·	
	• $\frac{\alpha - 1.5}{"0.6108276349"} = \frac{\alpha - 1.5}{"0.36238430}$ • $\frac{\alpha - 1.5}{1.6 - \alpha} = \frac{"0.61082763}{"0.36238430}$ • $\frac{\alpha - 1.5}{"0.6108276349"} = \frac{\alpha - 1.5}{"0.6108276349}$	83"	1.5 "0.61082	76349"	A correct linear interpolation method. Do not allow this mark if a total of one or three negative lengths are used or if either fraction is the wrong way up. This mark may be implied.	M1
	Either • $\alpha = \left(\frac{(1.6)("0.6108276")}{"0.362384}\right)$ • $\alpha = 1.5 + \left(\frac{"0.36238436}{"0.36238436}\right)$ • $\alpha = 1.5 + \left(\frac{"0.36238436}{"-0.36238436}\right)$	0.6108276349" 083" + "0.61082	276349"	(0.1)	dependent on the previous M mark Rearranges to make $\alpha =$	dM1
	$\{\alpha = 1.562764092\} \Rightarrow \alpha = 1.563 (3 \text{ dp})$		A1			
	,			(lg	nore any subsequent iterations)	(3)
(b)	r	0.1 - x	(0.1)("0 61082763	2/0 ")	(3)
Way 2	$\frac{x}{"0.6108276349"} = \frac{x}{"0.36}$	$\frac{0.1 - \chi}{23843083"} \Rightarrow 2$	$x = \frac{(0.1)(0.1)}{0}$.9732119432		
	$\alpha = 1.5 + 0.062764092$				nds x using a correct method of gles and applies "1.5 + their x "	M1 dM1
	$\{\alpha = 1.562764092\} \Rightarrow \alpha$				1.563	A1 cao
(b) Way 3	$\frac{0.1 - x}{"0.6108276349"} = \frac{0.36}{"0.36}$	$\frac{x}{23843083"} \Rightarrow x$	$x = \frac{(0.1)(0.1)}{0.1}$	"0.36238430 .9732119432	$\frac{083"}{2} = 0.037235908$	
	$\alpha = 1.6 - 0.037235908$			Fi	nds x using a correct method of gles and applies "1.6 – their x "	M1 dM1
	$\{\alpha = 1.562764092\} \Rightarrow \alpha = 0.000000000000000000000000000000000$	=1.563 (3 dp)			1.563	A1 cao
						7

Past Paper	(Mark Schei	me) This resource was created and owned by Pearson Edexcel WFM01
		Question 1 Notes
1. (a)	Note	Incorrect differentiation followed by their estimate of α with no evidence of applying the
		NR formula is final dM0A0.
	dM1	This mark can be implied by applying at least one correct <i>value</i> of either $f(1.5)$ or $f'(1.5)$
		to 1 significant figure in 1.5 $f(1.5)$ So just 1.5 $f(1.5)$ with an incorrect answer
		to 1 significant figure in $1.5 - \frac{f(1.5)}{f'(1.5)}$. So just $1.5 - \frac{f(1.5)}{f'(1.5)}$ with an incorrect answer
		and no other evidence scores final dM0A0.
	Note	You can imply the M1A1 marks for algebraic differentiation for either
		• $f'(1.5) = 6(1.5) + \frac{5}{6}(1.5)^{-\frac{3}{2}}$
		$\frac{1}{1}$
		$3(1.5)^2 - \frac{3}{3}(1.5)^2 - 6$
		• f'(1.5) applied correctly in $\alpha \approx 1.5 - \frac{3}{5}$
		• f'(1.5) applied correctly in $\alpha \approx 1.5 - \frac{3(1.5)^2 - \frac{5}{3}(1.5)^{-\frac{1}{2}} - 6}{6(1.5) + \frac{5}{6}(1.5)^{-\frac{3}{2}}}$
		5 -2
	Note	Differentiating INCORRECTLY to give $f'(x) = 6x - \frac{5}{6}x^{-2}$ leads to
		-0.6108276349 1565187120 1565 (2 dz)
		$\alpha \simeq 1.5 - \frac{-0.6108276349}{9.3703703704} = 1.565187139 = 1.565 (3 dp)$
		This response should be awarded M1 A0 dM1 A0
	Note	Differentiating INCORRECTLY to give $f'(x) = 6x - \frac{5}{6}x^{-\frac{3}{2}}$ leads to
		-0.6108276349
		$\alpha \simeq 1.5 - \frac{-0.6108276349}{8.546390788} = 1.571471999 = 1.571 (3 dp)$
		This response should be awarded M1 A0 dM1 A0
	S.C.	Special Case: Differentiating INCORRECTLY to give $f'(x) = 6x - \frac{5}{6}x^{-\frac{3}{2}}$ and
		$\alpha \approx 1.5 - \frac{f(1.5)}{f'(1.5)} = 1.571$ is M1 A0 dM1 A0
		$\alpha - 1.5$ = $\begin{bmatrix} -0.6108276349 \end{bmatrix}$ is a valid method for the first M mark
1. (b)	Note	$\frac{\alpha}{1.6 - \alpha} = \frac{0.0100270549}{0.3623843083}$ is a valid method for the first M mark
	Note	$\frac{\alpha - 1.5}{1.6 - \alpha} = \frac{"0.6108276349"}{"0.3623843083"} \Rightarrow \alpha = 1.563 \text{ with no intermediate working is M1 dM1 A1}$
	Note	$\frac{\alpha}{-0.6108276349} = \frac{1.0 \alpha}{0.3623843083} \Rightarrow \alpha = 1.745861961 = 1.745 (3 dp) \text{ is M0 dM0 A0}$
		$\alpha - 15$ $16 - \alpha$
	Note	$\frac{\alpha}{-0.6108276349} = \frac{1.5 \alpha}{-0.3623843083} \Rightarrow \alpha = 1.562764092 = 1.563 (3 dp) \text{ is M1 dM1 A1}$
		0.01002/0547 0.00200000

■ Past Paper

WFM01

blank

Leave

$f(z) = z^4 - 6z^3 + 38z^2 - 94z + 22$

(a) Given that z = 2 + 3i is a root of the equation f(z) = 0, use algebra to find the three other roots of f(z) = 0

(7)

(b) Show the four roots of f(z) = 0 on a single Argand diagram.

(2)

Mathematics F1

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question Number	Scheme		Notes	Marks
2.	$f(z) = z^4 - 6z^3 + 38z^2 - 94z^2$	$z + 221$, $z_1 = 2 + 3i$	satisfies $f(z) = 0$	
(a)	$\left\{z_2 = \right\} 2 - 3i$	2-3i seen or used in part (a)		B1
	$z^2 - 4z + 13$		Attempt to expand $(z-(2+3i))(z-(2-3i))$ or $(z-(2+3i))(z-(\text{their complex }z_2))$ ny valid method <i>to establish a quadratic factor</i> . $z=2\pm 3i \Rightarrow z-2=\pm 3i \Rightarrow z^2-4z+4=-9$ or sum of roots = 4, product of roots 13 to give $z^2\pm$ (their sum) $z+$ (their product)	M1
			$z^2 - 4z + 13$	A1
	$(z^2 - 4z + 13)(z^2 - 2z + 17)$	long divi	pts to find the other quadratic factor. e.g. using sion to obtain either $z^2 \pm kz +, k = \text{value} \neq 0$ or $z^2 \pm \alpha z + \beta$, $\beta = \text{value} \neq 0$, α can be 0 or e.g. factorising $f(z) = (z^2 - 2z + 5)(z^2 \pm kz \pm c)$, $k = \text{value} \neq 0$ $z + 5)(z^2 \pm \alpha z \pm \beta)$, $\beta = \text{value} \neq 0$, α can be 0	M1
			$z^2 - 2z + 17$	A1
	$\left\{z^2 - 2z + 17 = 0 \Longrightarrow\right\}$			
	Either $z = \frac{2 \pm \sqrt{(-2)^2}}{2(1)}$ • $(z-1)^2 - 1 + 17 = 0$		dependent on only the previous M mark Correct method of applying the quadratic formula or completing the square for solving a 3TQ on their 2 nd quadratic factor	dM1
	$\{z = \} 1 + 4i, 1 - 4i$		1 + 4i and 1 – 4i	A1
				(7)
(b)			 Criteria 2±3i plotted correctly in quadrants 1 and 4 Dependent on the final M mark being awarded in part (a). Their final two roots are plotted correctly 	
		Re	Satisfies at least one of the criteria	B1ft
	(2, -3) $(1, -4)$		Satisfies both criteria with some indication of scale or coordinates stated with at least one pair of roots symmetrical about the real axis	B1ft
				(2)
l				י

Mathematics F1

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

		Question 2 Notes		
2. (a)	Note	No working leading to $x = 1+4i$, $1-4i$ is M0A0M0A0M0A0.		
	Note	You can assume $x \equiv z$ for solutions in this question.		
	Note	Give dM1A1 for $z^2 - 2z + 17 = 0 \Rightarrow z = 1 + 4i$, $1 - 4i$ with no intermediate working.		
	Note	Special Case: If their second 3 term quadratic factor can be factorised then		
		give Special Case dM1 for correct factorisation leading to $z =$		
	Note	Otherwise, give 3 rd dM0 for applying a method of factorising to solve their 3TQ.		
	Note	Note Reminder: Method Mark for solving a 3TQ, " $az^2 + bz + c = 0$ "		
		Formula:		
	Attempt to use the correct formula (with values for a, b and c)			
	Completing the square:			
		$\left(z \pm \frac{b}{2}\right)^2 \pm q \pm c = 0, \ q \neq 0, \ \text{leading to} \ z = \dots$		

■ Past Paper

This resource was created and owned by Pearson Edexcel

WFM01

Leave blank

3. (a) Use the standard results for $\sum_{r=1}^{n} r^2$ and $\sum_{r=1}^{n} r^3$ to show that, for all positive integers n,

$$\sum_{r=1}^{n} r^{2}(r+1) = \frac{1}{12}n(n+1)(n+2)(an+b)$$

where a and b are integers to be determined.

(4)

(b) Given that

$$\sum_{r=5}^{25} r^2(r+1) + \sum_{r=1}^{k} 3^r = 140543$$

find the value of the integer k.

(4)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Mathematics F1 WFM01

Question Number	Scheme			Notes	Marks
3. (a)	$\sum_{r=1}^{n} r^{2}(r+1) = \sum_{r=1}^{n} r^{3} + \sum_{r=1}^{n} r^{2}$				
	$= \frac{1}{4}n^2(n+1)^2 + \frac{1}{6}n(n+1)(2n+1)$		-	expand $r^2(r+1)$ and attempts to one correct standard formula into their resulting expression.	M1
			C	Correct expression (or equivalent)	A1
	1			endent on the previous M mark	
	$= \frac{1}{12}n(n+1)[3n(n+1)+2(2n+1)]$	A	ttempt to	factorise at least $n(n+1)$ having	dM1
_	12	atten	npted to si	ubstitute both standard formulae.	
	$= \frac{1}{12}n(n+1)\Big[3n^2 + 7n + 2\Big]$		{this	step does not have to be written}	
	$= \frac{1}{12}n(n+1)(n+2)(3n+1)$		C	orrect completion with no errors.	A1
_	$\frac{12}{12}^{n(n+1)(n+2)(3n+1)}$			Note: $a = 3, b = 1$	
					(4)
(b)	$\sum_{r=0}^{25} r^2 (r+1) + \sum_{r=0}^{k} 3^r = 140543$	{ N	ote: Let	$f(n) = \frac{1}{12}n(n+1)(n+2)(3n+1)$	
	r=5	(1		or their answer to part (a).} Attempts to find either	
	$\left\{ \sum_{r=5}^{25} r^2(r+1) \right\} = \left(\frac{1}{12} (25)(26)(27)(76) \right)$	$-\left(\frac{1}{12}(4)(5)\right)$	(6)(13)	f(25) - f(4) or	
	$\left(\frac{2}{r=5}\right)$ (12)	(12)	f(25) - f(5)	M1
	${ = 111150 - 130 = 111020 }$			This mark can be implied	
	d		depe	endent on the previous M mark	
	$\sum_{r=1}^{k} 3^{r} = 140543 - "111020" \ \left\{ = 29523 \right\}$		tl	heir $\sum_{r=1}^{k} 3^r = 140543 - "111020"$	dM1
				This mark can be implied	
	$\frac{3(1-3^k)}{1-3}$ or $\frac{3(3^k-1)}{3-1}$			Correct GP sum formula with $a = 3$, $r = 3$, $n = k$	M1
	$\left\{\frac{3\left(1-3^{k}\right)}{1-3} = 29523 \Rightarrow 3^{k} = 19683 \Rightarrow\right\} k=9$			k = 9 from a correct solution	A1 cso
(1)			ı		(4)
(b) Alt 1	Alt 1 Method for the final 2 marks			L.	
Alt I	$\sum_{r=1}^{3} 3^r = 29523$			Attempts to solve $\sum_{r=1}^{\infty} 3^r = \text{value}$	M1
	$\Rightarrow 3+3^2+3^3+3^4+3^5+3^6+3^7+3^8+3^9$			by evaluating 3^r from $r=1$ to at	IVII
	or $3+9+27+81+243+729+2187$	+6561+1968		least as far as $r = 9$	
	= 29523, so k = 9			k = 9 from a correct solution	A1 cso
(b)	Alt 2 Method for the final 2 marks				
Alt 2	$\sum_{r=1}^{k} 3^r = 29523 \implies 3(1+3+3^2+3^3+\dots$	$+3^{k-1}) = 29$	9523		
	$\left\{ \sum_{r=1}^{k} 3^{r} = \sum_{r=1}^{k-1} 3^{r} + 3^{k} = \right\} \frac{"29523"}{3} - 1 + $	$3^k = "29523$	3"	$\frac{"29523"}{3} - 1 + 3^k = "29523"$	M1
	$\left\{3^k = 19683 \Longrightarrow\right\} k = 9$			k = 9 from a correct solution	A1 cso
	,				8

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Mathematics F1

		Question 3 Notes
3. (a)	Note	Applying e.g. $n = 1$, $n = 2$ to the printed equation without applying the standard formulae
		to give $a=3$, $b=1$ is M0A0M0A0
	Alt 1	Alt Method 1 (Award the first two marks using the main scheme)
		Using $\frac{1}{12} (3n^4 + 10n^3 + 9n^2 + 2n) = \frac{1}{12} (an^4 + (3a+b)n^3 + (2a+3b)n^2 + 2bn)$ o.e.
	dM1	Equating coefficients to find both $a =$ and $b =$ and at least one of $a = 3, b = 1$
	A1 cso	Finds $a=3$, $b=1$ and demonstrates the identity works for all of its terms.
	Alt 2	Alt Method 2: (Award the first two marks using the main scheme)
		$\frac{1}{4}n^2(n+1)^2 + \frac{1}{6}n(n+1)(2n+1) \equiv \frac{1}{12}n(n+1)(n+2)(an+b)$
	dM1	Substitutes $n = 1$, $n = 2$, into this identity o.e. and solves to find both $a =$ and $b =$
		and at least one of $a=3$, $b=1$. Note: $n=1$ gives $4=a+b$ and $n=2$ gives $7=2a+b$
	A1	Finds $a=3, b=1$
	Note	Allow final dM1A1 for $\frac{1}{4}n^4 + \frac{5}{6}n^3 + \frac{3}{4}n^2 + \frac{1}{6}n$ or $\frac{1}{12}n(3n^3 + 10n^2 + 9n + 2)$
		or $\frac{1}{12}(3n^4 + 10n^3 + 9n^2 + 2n) \rightarrow \frac{1}{12}n(n+1)(n+2)(3n+1)$ with no incorrect working.
	Note	A correct proof $\sum_{r=1}^{n} r^2(r+1) = \frac{1}{12}n(n+1)(n+2)(3n+1)$ followed by stating an incorrect
		e.g. $a=1, b=3$ is M1A1dM1A1 (ignore subsequent working)
(b)	Note	Using $f(25) - f(5)$ gives
		• $f(25) - f(5) = 111150 - 280 = 110870$
	Note	Allow 1st M1 for either
		$\left\{ \sum_{r=5}^{25} r^2 (r+1) \right\} = \left(\frac{1}{4} (25)^2 (26)^2 + \frac{1}{6} (25)(26)(51) \right) - \left(\frac{1}{4} (4)^2 (5)^2 + \frac{1}{6} (4)(5)(9) \right)$
		$\left\{ = (105625 + 5525) - (100 + 30) = 111150 - 130 = 111020 \right\}$
		$\left\{\sum_{r=5}^{25} r^2 (r+1)\right\} = \left(\frac{1}{4} (25)^2 (26)^2 + \frac{1}{6} (25)(26)(51)\right) - \left(\frac{1}{4} (5)^2 (6)^2 + \frac{1}{6} (5)(6)(11)\right)$
		$\left\{ = (105625 + 5525) - (225 + 55) = 111150 - 280 = 110870 \right\}$
	Note	$\frac{3(1-3^k)}{1-3} \text{ or } \frac{3(3^k-1)}{3-1} = 29523 \Rightarrow k = 9 \text{ with no intermediate working is } 2^{\text{nd}} \text{ M1 } 2^{\text{nd}} \text{ A1}$
	Note	$\sum_{r=1}^{k} 3^{r} = 29523 \Rightarrow k = 9 \text{ with no intermediate working is } 2^{\text{nd}} \text{ M1 } 2^{\text{nd}} \text{ A1}$

This resource was created and owned by Pearson Edexcel

WFM01

Leave blank

4. The quadratic equation

$$3x^2 + 2x + 5 = 0$$

has roots α and β .

Without solving the equation,

(a) find the value of
$$\alpha^2 + \beta^2$$

(b) show that
$$\alpha^3 + \beta^3 = \frac{82}{27}$$

(c) find a quadratic equation which has roots

$$\left(\alpha + \frac{\alpha}{\beta^2}\right)$$
 and $\left(\beta + \frac{\beta}{\alpha^2}\right)$

giving your answer in the form $px^2 + qx + r = 0$, where p, q and r are integers.

(4)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Mathematics F1 WFM01

Question Number	Scheme	Notes	Marks
4.	$3x^2 + 2x + 5 = 0 \text{ has roots } \alpha, \beta$		
(a)	$\alpha + \beta = -\frac{2}{3}, \ \alpha\beta = \frac{5}{3}$		
	$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = \dots$	Use of the correct identity for $\alpha^2 + \beta^2$ (May be implied by their work)	M1
	$= \left(-\frac{2}{3}\right)^2 - 2\left(\frac{5}{3}\right) = -\frac{26}{9}$	$-\frac{26}{9}$ or $-2\frac{8}{9}$ from correct working	A1 cso
		TI C	(2)
(b)	$\alpha^{3} + \beta^{3} = (\alpha + \beta)^{3} - 3\alpha\beta(\alpha + \beta) = \dots$ or $= (\alpha + \beta)(\alpha^{2} + \beta^{2} - \alpha\beta) = \dots$	Use of an appropriate and correct identity for $\alpha^3 + \beta^3$ (May be implied by their work)	M1
	$= \left(-\frac{2}{3}\right)^3 - 3\left(\frac{5}{3}\right)\left(-\frac{2}{3}\right) = \frac{82}{27} *$ or $= \left(-\frac{2}{3}\right)\left(-\frac{26}{9} - \frac{5}{3}\right) = \frac{82}{27} *$	$\frac{82}{27}$ from correct working	
(c)	α β $\alpha^{2} + \alpha$	$\alpha^2 \theta + \theta$ $\alpha = \theta$	(2)
	Sum = $\alpha + \frac{\alpha}{\beta^2} + \beta + \frac{\beta}{\alpha^2}$ or = $\frac{\alpha\beta^2 + \alpha}{\beta^2}$ = $\alpha + \beta + \frac{\alpha^3 + \beta^3}{(\alpha\beta)^2}$ = $\frac{\alpha^3 + \beta^3 + \alpha^2}{\alpha^2\beta^2}$ = $\left(-\frac{2}{3}\right) + \frac{\left(\frac{82}{27}\right)}{\left(\frac{5}{3}\right)^2}$ $\left\{ = -\frac{2}{3} + \frac{82}{75} = \frac{32}{75} \right\}$	either $\frac{\alpha^3 + \beta^3}{(\alpha\beta)^2}$ or $\frac{\alpha^3 + \beta^3}{\alpha^2\beta^2}$ and substitutes at least one of their $\alpha + \beta$, $\alpha^3 + \beta^3$ or $\alpha\beta$ into an expression for the sum of $\left(\alpha + \frac{\alpha}{\beta^2}\right)$ and $\left(\beta + \frac{\beta}{\alpha^2}\right)$	M1
	Product = $\left(\alpha + \frac{\alpha}{\beta^2}\right)\left(\beta + \frac{\beta}{\alpha^2}\right)$ or = $\left(\frac{\alpha\beta^2 + \beta}{\beta^2}\right)$ = $\alpha\beta + \frac{\alpha\beta}{\alpha^2} + \frac{\alpha\beta}{\beta^2} + \frac{\alpha\beta}{\alpha^2\beta^2}$ = $\frac{\alpha^3\beta^3 + \alpha\beta}{\alpha^2\beta^2}$ = $\alpha\beta + \frac{\beta}{\alpha} + \frac{\alpha}{\beta} + \frac{1}{\alpha\beta}$ = $\frac{\alpha^3\beta^3 + \alpha\beta}{\alpha\beta^3}$ = $\alpha\beta + \frac{\beta^2 + \alpha^2}{\alpha\beta} + \frac{1}{\alpha\beta}$ = $\frac{\alpha^3\beta^3 + \alpha\beta}{\alpha\beta^3}$ = $\alpha^3\beta^3 + \alpha\beta$	Expands $\left(\alpha + \frac{\alpha}{\beta^2}\right) \left(\beta + \frac{\beta}{\alpha^2}\right)$ $\frac{\beta^3 + \alpha^3 \beta + \alpha \beta}{\alpha^2 \beta^2}$ to give 4 terms and substitutes either their $\alpha\beta$ at least once or their $\alpha^2 + \beta^2$	M1
	$x^2 - \frac{32}{75}x + \frac{8}{15} = 0$	Applies $x^2 - (\text{sum})x + \text{product}$ (can be implied), where sum and product are numerical values. Note: "=0" not required for this mark	M1
	$75x^2 - 32x + 40 = 0$	Any integer multiple of $75x^2 - 32x + 40 = 0$, including the "=0"	A1
			(4)
1	<u> </u>		

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

1 dot i apoi	(Mark Scher	•
		Question 4 Notes
4. (a)	Note	Writing a correct $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$ without attempting to substitute at least one
		of either their $\alpha + \beta$ or their $\alpha\beta$ into $(\alpha + \beta)^2 - 2\alpha\beta$ is M0
	Note	Give M1A0 for $\alpha + \beta = \frac{2}{3}$, $\alpha\beta = \frac{5}{3}$ leading to $\alpha^2 + \beta^2 = \left(\frac{2}{3}\right)^2 - 2\left(\frac{5}{3}\right) = -\frac{26}{9}$
	Note	Give M1A1 for writing $\alpha^2 + \beta^2 = -\frac{26}{9}$ with no evidence of applying $\alpha + \beta = -\frac{2}{3}$, $\alpha\beta = \frac{5}{3}$
(b)	Note	Allow M1 A1 for $\alpha^3 + \beta^3 = (\alpha^2 + \beta^2)(\alpha + \beta) - \alpha\beta(\alpha + \beta)$
		$= \left(-\frac{26}{9}\right)\left(-\frac{2}{3}\right) - \left(-\frac{2}{3}\right)\left(\frac{5}{3}\right) \left\{=\frac{52}{27} + \frac{10}{9}\right\} = \frac{82}{27} *$
	Note	Writing a correct $\alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)$ without attempting to substitute
		at least one of either their $\alpha + \beta$ or their $\alpha\beta$ into $(\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)$ is M0
	Note	Writing a correct $\alpha^3 + \beta^3 = (\alpha + \beta)(\alpha^2 + \beta^2 - \alpha\beta)$ without attempting to substitute
		at least one of either their $\alpha + \beta$, their $\alpha^2 + \beta^2$ or their $\alpha\beta$ into $(\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)$ is M0
(a), (b)	Note	Applying $\frac{-1+\sqrt{14}i}{3}$, $\frac{-1-\sqrt{14}i}{3}$ explicitly will score (a) M0A0, (b) M0A0
		• E.g. In part (a), give no credit for $\left(\frac{-1+\sqrt{14}i}{3}\right)^2 + \left(\frac{-1-\sqrt{14}i}{3}\right)^2 = -\frac{26}{9}$
		• E.g. In part (b), give no credit for $\left(\frac{-1+\sqrt{14}i}{3}\right)^3 + \left(\frac{-1-\sqrt{14}i}{3}\right)^3 = \frac{82}{17}$
	Note	Using $\frac{-1+\sqrt{14}i}{3}$, $\frac{-1-\sqrt{14}i}{3}$ to find $\alpha+\beta=-\frac{2}{3}$, $\alpha\beta=\frac{5}{3}$ followed by
		• $\alpha^2 + \beta^2 = \left(\frac{2}{3}\right)^2 - 2\left(\frac{5}{3}\right) = -\frac{26}{9}$, scores M1A0 in part (a)
		• $\alpha^3 + \beta^3 = \left(-\frac{2}{3}\right)^3 - 3\left(\frac{5}{3}\right)\left(-\frac{2}{3}\right) = \frac{82}{27}$, scores M1A0 in part (b)
(c)	Note	A correct method leading to $a = 75$, $b = -32$, $c = 40$ without writing a final answer of
		$75x^2 - 32x + 40 = 0$ is final M1A0.
	Note	Using $\frac{-1+\sqrt{14}i}{3}$, $\frac{-1-\sqrt{14}i}{3}$ explicitly to find the sum and product of $\left(\alpha+\frac{\alpha}{\beta^2}\right)$ and $\left(\beta+\frac{\beta}{\alpha^2}\right)$
		scores M0M0M0A0 in part (c).
	Note	Using $\frac{-1+\sqrt{14}i}{3}$, $\frac{-1-\sqrt{14}i}{3}$ to find $\alpha+\beta=-\frac{2}{3}$, $\alpha\beta=\frac{5}{3}$ and applying $\alpha+\beta=-\frac{2}{3}$, $\alpha\beta=\frac{5}{3}$
		can potentially score full marks in part (c). E.g.
		• Sum = $\alpha + \beta + \frac{\alpha^3 + \beta^3}{(\alpha\beta)^2} = \left(-\frac{2}{3}\right) + \frac{\left(\frac{82}{27}\right)}{\left(\frac{5}{3}\right)^2} = \frac{32}{75}$
		• Product = $\alpha\beta + \frac{\beta^2 + \alpha^2}{\alpha\beta} + \frac{1}{\alpha\beta} = \left(\frac{5}{3}\right) + \frac{\left(-\frac{26}{9}\right)}{\left(\frac{5}{3}\right)} + \frac{1}{\left(\frac{5}{3}\right)} = \frac{8}{15}$
		• $x^2 - \frac{32}{75}x + \frac{8}{15} = 0 \Rightarrow 75x^2 - 32x + 40 = 0$

■ Past Paper

This resource was created and owned by Pearson Edexcel

5. (i) Given that

$$\frac{2z + 3}{z + 5 - 2i} = 1 + i$$

find z, giving your answer in the form a + bi, where a and b are real constants.

(5)

(ii) Given that

$$w = (3 + \lambda i)(2 + i)$$

where $\boldsymbol{\lambda}$ is a real constant, and that

$$|w| = 15$$

find the possible values of λ .

(4)

blank

www.mystudybro.comThis resource was created and owned by Pearson Edexcel Past Paper (Mark Scheme)

Mathematics F1

Question Number	Scheme		Notes	Marks
5.	(i) $\frac{2z+3}{z+5-2i} = 1+i$ (ii) $w = (3+\lambda i)(2+i)$ and $ w = 15$			
(i)	2z + 3 = (1 + i)(z + 5 - 2i)		Multiplies both sides by $(z + 5 - 2i)$	M1
	2z + 3 = z + 5 - 2i + iz + 5i + 2 =	= z + iz + 7 + 3i		
	E.g. • $2z - z(1+i) = (1+i)(5-2i)$ • $z - iz = 4 + 3i$	-3	dependent on the previous M mark Collects terms in z to one side	dM1
	$z = \frac{4+3i}{1-i}$		Correct expression for $z =$	A1
	$z = \frac{(4+3i)}{(1-i)} \frac{(1+i)}{(1+i)} = \frac{1}{2} + \frac{7}{2}i$	Multiplies nu	dependent on both previous M marks merator and denominator by the conjugate of the denominator and attempts to find $z =$	ddM1
	(1-1) (1+1) 2 2	e.g. $\frac{1}{2} + \frac{7}{2}i$	or $\frac{7}{2}i + \frac{1}{2}$ or $0.5 + 3.5i$ or $a = \frac{1}{2}$, $b = \frac{7}{2}$	A1 cao
/*\	0 . 2 . 4 . 3 . 5 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2		Marin I al II de Company	(5)
(i)	2z + 3 = (1 + i)(z + 5 - 2i)	2:>	Multiplies both sides by $(z + 5 - 2i)$	M1
Way 2	2(a + bi) + 3 = (1 + i)(a + bi + 5 - 2i + 6i) + 2bi = a + bi + 5 - 2i + 6i $(2a + 3) + 2bi = (a - b + 7) + (b + 6i)$ $(2a + 3) + 2bi = (a - b + 7) + (b + 6i)$	ai - b + 5i + 2 $+ a + 3)i$	dependent on the previous M mark Applies $z = a + bi$, multiplies out and attempts to equate either the real part or the imaginary part of the resulting equation	dM1
	$ {\text{Real} \Rightarrow } 2a + 3 = a - b \\ {\text{Imaginary} \Rightarrow } 2b = b + a $		Both correct equations which can be simplified or un-simplified	A1
	$\begin{cases} a+b=4 \\ -a+b=3 \end{cases} \Rightarrow b=\frac{7}{2}, a=\frac{1}{2}$ dependent on be equations bot simultaneously to		nt on both previous M marks. Obtains two ions both in terms of a and b and solves them ously to give at least one of $a =$ or $b =$ $c = \frac{7}{2}$ or $\frac{1}{2} + \frac{7}{2}i$ or $\frac{7}{2}i + \frac{1}{2}$ or $0.5 + 3.5i$	ddM1 A1 cao
		2		(5)
(ii)	$w = 6 + 3i + 2i\lambda - \lambda$	1	Squares and adds the real and imaginary	
	$w = (6 - \lambda) + (3 + 2\lambda)i$		parts of w and sets equal to either 15^2 or 15	M1
	$(15)^2 = (6 - \lambda)^2 + (3 + 2\lambda)^2$		Correct equation which can be simplified or un-simplified	A1
	$\begin{cases} 225 = 36 - 12\lambda + \lambda^2 + 9 + 12\lambda +$	4 2 2)	dependent on the previous M mark	
		- 4 <i>n</i> }	Solves their quadratic in λ	dM1
	$225 = 45 + 5\lambda^2 \implies \lambda^2 = 36$		to give $\lambda^2 = \dots$ or $\lambda = \dots$	
	$\lambda = 6, -6$		$\lambda = 6, -6$	A1
(;;)				(4)
(ii) Way 2	$\left\{ \left (3 + \lambda i)(2 + i) \right = 15 \Longrightarrow \right\}$		$\sqrt{(3^2 + \lambda^2)}\sqrt{(2^2 + 1^2)} = 15$	M1
	$\sqrt{(3^2 + \lambda^2)}\sqrt{(2^2 + 1^2)} = 15$		or $(3^2 + \lambda^2)(2^2 + 1^2) = 15$	
	or $(3^2 + \lambda^2)(5) = (15)^2$		Correct equation which can be simplified or un-simplified	A1
	$45 = 9 + \lambda^2 \implies \lambda^2 = 36$		dependent on the previous M mark Solves their quadratic in λ to give $\lambda^2 = \dots$ or $\lambda = \dots$	dM1
	$\lambda = 6, -6$		$\lambda = 6, -6$	A1
	,		· -, -	(4)
				9

This resource was created and owned by Pearson Edexcel

WFM01 **Ouestion** Scheme **Notes** Marks Number $\frac{2z+3}{z+5-2i} = 1+i$ 5. $\frac{2z+10-4i-7+4i}{z+5-2i} = 1+i$ (i) Way 3 $2 + \frac{-7 + 4i}{z + 5 - 2i} = 1 + i$ $\frac{2z+3}{z+5-2i} \rightarrow 2 \pm \frac{k}{z+5-2i}, \ k \in \mathbb{C}$ M1 $1-i = \frac{7-4i}{7+5-2i}$ dependent on the previous M mark $z + 5 - 2i = \frac{7 - 4i}{1}$ dM1 Rearranges to give z + 5 - 2i = ...Correct expression for z + 5 - 2i = ...A1 dependent on both previous M marks $z + 5 - 2i = \frac{(7 - 4i)}{(1 - i)} \frac{(1 + i)}{(1 + i)} \Rightarrow z = ...$ Multiplies numerator and denominator ddM1 by the conjugate of the denominator and attempts to find z = ... $\left\{z + 5 - 2\mathbf{i} = \frac{11}{2} + \frac{3}{2}\mathbf{i} \Rightarrow \right\} z = \frac{1}{2} + \frac{7}{2}\mathbf{i}$ e.g. $\frac{1}{2} + \frac{7}{2}i$ or $\frac{7}{2}i + \frac{1}{2}$ or 0.5 + 3.5i**A**1 **(5)** $\frac{2(a+bi)+3}{a+bi+5-2i} = 1+i \implies \frac{(2a+3)+2bi}{(a+5)+(b-2)i} = 1+i$ (i) Wav 4 $\left(\frac{(2a+3)+2bi}{(a+5)+(b-2)i}\right)\left(\frac{(a+5)-(b-2)i}{(a+5)-(b-2)i}\right)=1+i$ $\frac{\left[(2a+3)(a+5)+2b(b-2)\right]+i\left[2b(a+5)-(2a+3)(b-2)\right]}{(a+5)^2+(b-2)^2}=1+i$ {Real \Rightarrow } $\frac{(2a+3)(a+5)+2b(b-2)}{(a+5)^2+(b-2)^2} = 1$ Applies z = a + biand a full method M1leading to equating {Imaginary \Rightarrow } $\frac{2b(a+5)-(2a+3)(b-2)}{(a+5)^2+(b-2)^2} = 1$ both the real part and the imaginary part dependent on the previous M mark $\{\text{Real} \Rightarrow \} \ a^2 + b^2 + 3a - 14 = 0$ Manipulates both their real part and their dM1 imaginary part into their simplest forms {Imaginary \Rightarrow } $a^2 + b^2 + 6a - 11b + 23 = 0$ Both correct simplified equations A₁ "Real - Imaginary" gives -3a + 11b - 37 = 0 and e.g. • $a = \frac{11b - 37}{3} \implies \left(\frac{11b - 37}{3}\right)^2 + b^2 + 3\left(\frac{11b - 37}{3}\right) - 14 = 0$ dependent on both previous M marks. Solves their equations $\Rightarrow 2b^2 - 11b + 14 = 0 \Rightarrow (b-2)(2b-7) = 0 \Rightarrow b = ...$ ddM1 simultaneously to obtain • $b = \frac{3a+37}{11} \implies a^2 + \left(\frac{3a+37}{11}\right)^2 + 3a - 14 = 0$ at least one value of b = ... or a = ... $\Rightarrow 2a^2 + 9a - 5 = 0 \Rightarrow (a+5)(2a-1) = 0 \Rightarrow a = \dots$ $z = \frac{1}{2} + \frac{7}{2}i$ only e.g. $\frac{1}{2} + \frac{7}{2}i$ or $\frac{7}{2}i + \frac{1}{2}$ or 0.5 + 3.5i**A**1 **(5)**

www.mystudybro.comThis resource was created and owned by Pearson Edexcel **Mathematics F1**

Past Paper (Mark Scheme)

Question Number		Scheme	Notes	Marks	
5.		$\frac{2z+3}{z+5-2i}$	= 1 + i		
(i) Way 5	$\frac{2z+3}{1+i}$	$\frac{3}{z} = z + 5 - 2i$			
	$\frac{(2z+3)}{(1+i)}$	$\frac{(1-i)}{(1-i)} = z + 5 - 2i$	Multiplies $\frac{(2z+3)}{(1+i)}$ by $\frac{(1-i)}{(1-i)}$ and sets equal to $z+5-2i$	M1	
	$\frac{(2z+3)}{2}$	$\frac{0(1-i)}{2} = z + 5 - 2i$ 2iz - 3i = 2z + 10 - 4i			
	2z + 3 -	2iz - 3i = 2z + 10 - 4i			
	2i	z = -7 + i	dependent on the previous M mark Rearranges to make $2iz =$	dM1	
			Correct expression for $2iz =$	A1	
	-2	$2z = -7i - 1 \Rightarrow z = \dots$	dependent on both previous M marks Multiplies both sides by i and attempts to find $z =$	ddM1	
	z	$=\frac{1}{2}+\frac{7}{2}i$	e.g. $\frac{1}{2} + \frac{7}{2}i$ or $\frac{7}{2}i + \frac{1}{2}$ or $0.5 + 3.5i$	A1	
			estion 5 Notes		
5. (i)	Note		and $z = -5 + 2i$ but $z = \frac{1}{2} + \frac{7}{2}i$ must be state	ed as the	
		only answer for the final A mark			
	Note	Give final A0 for a correct $a = \frac{1}{2}$, $b = \frac{1}{2}$	$=\frac{7}{2}$ followed by an incorrect $\{z=\}$ $\frac{7}{2}+\frac{1}{2}i$		
	Note	ote $\{z =\} \frac{1}{2} + i\frac{7}{2}$ is fine for the final A mark			
	Note	Give final A0 for $\{z=\}$ $\frac{1+7i}{2}$ without reference to e.g. $a=\frac{1}{2}, b=\frac{7}{2}$ or $\frac{1}{2}+\frac{7}{2}i$, etc.			
(ii)	Note	$w = (6 - \lambda) + (3 + 2\lambda)i \implies (15)^2 = (60 + 10)^2$	$(5-\lambda)^2 - (3+2\lambda)^2$ is 1 st M0		
	Note	$ (3+\lambda i)(2+i) = 15 \implies \sqrt{(3^2 - \lambda^2)} \sqrt{(2^2 - 1^2)} = 15 \text{ is } 1^{\text{st}} \text{ M0}$			
	Note	Give final A0 for either • $\lambda = 6, -6 \Rightarrow \lambda = 6$ • $\lambda = 6, -6 \Rightarrow \lambda = -6$			

This resource was created and owned by Pearson Edexcel

WFM01

Leave blank

- 6. The parabola C has equation $y^2 = 32x$ and the point S is the focus of this parabola. The point P(2, 8) lies on C and the point T lies on the directrix of C. The line segment PT is parallel to the x-axis.
 - (a) Write down the coordinates of *S*.

(1)

(b) Find the length of *PT*.

(1)

(c) Using calculus, show that the tangent to C at the point P has equation

$$y = 2x + 4$$

(4)

The hyperbola H has equation xy = 4. The tangent to C at P meets H at the points L and M.

(d) Find the exact coordinates of the points L and M, giving your answers in their simplest form.

(6)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Mathematics F1

Question Number	Scheme			Notes	Marks	
6.	$C: y^2 = 32x$; S is the focus of C; $P(2, 8)$ lies on C; T lies on the directrix of C. $H: xy = 4$					
(a)	S has coordinates (8, 0)			(8, 0)	B1 cac	D
						(1)
(b)	{ PT is parallel to the x -axis \Rightarrow } $T(-8, 8) =$ Focus-directrix Property $\Rightarrow PT = \sqrt{8^2 + (8 - 2)^2}$		=10	PT = 10	B1 cac)
						(1)
(c)	$y = \sqrt{32} x^{\frac{1}{2}} \implies \frac{dy}{dx} = \frac{1}{2} \sqrt{32} x^{-\frac{1}{2}} \text{ or } 2\sqrt{2} x^{-\frac{1}{2}}$	1/2		$\frac{\mathrm{d}y}{\mathrm{d}x} = \pm k x^{-\frac{1}{2}}; k \neq 0$		
	$y^2 = 32x \implies 2y \frac{\mathrm{d}y}{\mathrm{d}x} = 32$			$\lambda y \frac{\mathrm{d}y}{\mathrm{d}x} = \mu \; ; \; \lambda, \mu \neq 0$	M1	
	$x = 8t^2$, $y = 16t \implies \frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx} = 16\left(\frac{1}{16t}\right)$	$x = at^2, y =$	$=2at \Rightarrow$	their $\frac{dy}{dt} \times \frac{1}{\text{their } \frac{dy}{dt}}$; $a \neq 0$		
	So at P , $m_T = 2$			work leading to $m_T = 2$	A1	
	Either		_	nt line method using their		
	• $y-8 = "2"(x-2)$ • $8 = "2"(2) + c \implies y = "2"x + \text{their } c$,	which is found by using	M1	
	Correct algebra leading to $y = 2x + 4$	Ca.	icuius. 1	Note: m_T must be a value Correct solution only	A1 *	
	Correct argeona reading to $y = 2x + 4$			Correct solution only		(4)
(4)	$x(2x+4) = 4 \qquad \left(\frac{y-4}{2}\right)y = 4 \qquad \text{Sub}$	bsitutes either				
(d)	$x(2x+4)-4 \qquad \boxed{\frac{2}{2}} y = 4$	$\bullet y = 2x + 4$				
	$\frac{4}{x} = 2x + 4 \qquad \qquad y = 2\left(\frac{4}{y}\right) + 4$	• $y = \frac{4}{x}$ or x	y		M1	
	$\frac{2}{t} = 2(2t) + 4$	• $x = 2t$ and	ι			
	$2x^2 + 4x - 4 = 0$ or $x^2 + 2x - 2 = 0$ or	toriii an equatioi		er x only, y only or t only correct 3 term quadratic		
		ite: $2x^2 + 4x = 4$	_	$2y - 4 = 0, 2 = 4t^2 + 4t$	A1	
		$x^2 + 4x - 4$	=0 are	e acceptable for this mark		
	• $\{x^2 + 2x - 2 = 0 \Rightarrow\} (x+1)^2 - 1 - 2 = 0 \Rightarrow$	> x =				
	• $\left\{2t^2 + 2t - 1 = 0 \Longrightarrow\right\} t = \frac{-2 \pm \sqrt{(2)^2 - 4(2)(2)^2 - 4(2)(2)}}{2(2)}$ and either $x = 2\left(\frac{1}{2} \pm \frac{1}{2}\sqrt{3}\right)$ or $y = \frac{1}{\left(\frac{1}{2} \pm \frac{1}{2}\right)}$	$\frac{2}{\sqrt{3}}$ for	rrect me squar ormula or	on the previous M mark thod (e.g. completing the re, applying the quadratic factorising) of solving a d either $x =$ or $y =$	dM1	
	• $\{y^2 - 4y - 8 = 0 \Rightarrow\}$ $y = \frac{4 \pm \sqrt{(-4)^2 - 4}}{2(1)}$	4(1)(-8)				
	Either $x = -1 \pm \sqrt{3}$ or $y = 2 \pm 2\sqrt{3}$	or both	correct y	oth correct <i>x</i> coordinates coordinates. (See note)	A1	
	E.g. $y = 2(-1 + \sqrt{3}) + 4$ or $y = \frac{4}{(-1 + \sqrt{3})}$, e	etc.	-	ent on the first M mark least one attempt to find the other coordinate	dM1	
	Either $(-1+\sqrt{3}, 2+2\sqrt{3}), (-1-\sqrt{3}, 2-2\sqrt{3})$ or $x = -1+\sqrt{3}, y = 2+2\sqrt{3}$ and $x = -1-\sqrt{3}, y = 2-2\sqrt{3}$			A1		
	, , ,	•				(6)
						12

www.mystudybro.comThis resource was created and owned by Pearson Edexcel Past Paper (Mark Scheme)

Mathematics F1

۱۸	/F	NΛ	n

		Question 6 Notes
6. (d)	Note	Condone $y = 2 \pm \sqrt{12}$ for the 2nd A1 mark.
	Note	Do not allow $(-1+\sqrt{3}, 2+\sqrt{12}), (-1-\sqrt{3}, 2-\sqrt{12})$ for the final A mark.
	Note	Writing $x = -1 \pm \sqrt{3}$, $y = 2 \pm 2\sqrt{3}$ without any evidence of the correct coordinate pairings is final A0
	Note	Writing coordinates the wrong way round
		E.g. writing $x = -1 + \sqrt{3}$, $y = 2 + 2\sqrt{3}$ and $x = -1 - \sqrt{3}$, $y = 2 - 2\sqrt{3}$
		followed by $(-1+\sqrt{3}, 2-2\sqrt{3}), (-1-\sqrt{3}, 2+2\sqrt{3})$ is final A0
	Note	Imply the 1 st dM1 mark for <i>writing down</i> the <i>correct</i> roots for <i>their</i> quadratic equation. E.g.
		• $2x^2 + 4x - 4 = 0$ or $x^2 + 2x - 2 = 0$ or $2x^2 + 4x = 4 \rightarrow x = -1 \pm \sqrt{3}$
		• $\frac{1}{2}y^2 - 2y - 4 = 0$ or $y^2 - 4y - 8 = 0 \rightarrow y = 2 \pm 2\sqrt{3}$
	Note	You can imply the 1 st A1, 1 st dM1, 2 nd A1 marks for either
		• $x(2x+4) = 4$ or $\frac{4}{x} = 2x+4 \rightarrow x = -1 \pm \sqrt{3}$
		$\bullet \left(\frac{y-4}{2}\right)y = 4 \text{ or } y = 2\left(\frac{4}{y}\right) + 4 \to y = 2 \pm 2\sqrt{3}$
		with no intermediate working.
	Note	You can imply the 1 st A1, 1 st dM1, 2 nd A1, 2 nd dM1 marks for either
		• $x(2x+4) = 4$ or $\frac{4}{x} = 2x+4 \rightarrow x = -1 \pm \sqrt{3}$ and $y = 2 \pm 2\sqrt{3}$
		• $\left(\frac{y-4}{2}\right)y = 4 \text{ or } y = 2\left(\frac{4}{y}\right) + 4 \rightarrow y = 2 \pm 2\sqrt{3} \text{ and } x = -1 \pm \sqrt{3}$
		with no intermediate working.
		You can then imply the final A1 mark if they correctly state the correct coordinate pairings.
	Note	2^{nd} A1: Allow this mark for both correct x coordinates or both correct y coordinates which are
		the form $\frac{a \pm b\sqrt{c}}{d}$, where a, b, c and d are simplified integers

blank

Past Paper

7. (i)

$$\mathbf{A} = \begin{pmatrix} 6 & k \\ -3 & -4 \end{pmatrix}, \text{ where } k \text{ is a real constant, } k \neq 8$$

Find, in terms of k,

(a)
$$A^{-1}$$

(3)

(b)
$$A^2$$

(1)

Given that
$$\mathbf{A}^2 + 3\mathbf{A}^{-1} = \begin{pmatrix} 5 & 9 \\ -3 & -5 \end{pmatrix}$$

(c) find the value of k.

(3)

$$\mathbf{M} = \begin{pmatrix} -\frac{1}{2} & -\sqrt{3} \\ \frac{\sqrt{3}}{2} & -1 \end{pmatrix}$$

The matrix \mathbf{M} represents a one way stretch, parallel to the y-axis, scale factor p, where p > 0, followed by a rotation anticlockwise through an angle θ about (0, 0).

(a) Find the value of p.

(2)

(b) Find the value of θ .

(2)

Mathematics F1

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question Number	Scheme		Notes	Mark	ZS.
7.	$\mathbf{A} = \begin{pmatrix} 6 & k \\ -3 & -4 \end{pmatrix}, k \neq 8; \ \mathbf{A}^2 + 3$	$3\mathbf{A}^{-1} = \begin{pmatrix} 5 & 9 \\ -3 & -5 \end{pmatrix}; \mathbf{M} = \begin{pmatrix} -\frac{1}{2} & -\sqrt{3} \\ \frac{\sqrt{3}}{2} & -1 \end{pmatrix}$			
(i)(a)	$\det(\mathbf{A}) = 6(-4) - (k)(-3) \ \left\{ = -24 + 3k \right\}$	which	Correct det(A) can be un-simplified or simplified	B1	
	$\left\{ \mathbf{A}^{-1} = \right\} \frac{1}{3k - 24} \begin{pmatrix} -4 & -k \\ 3 & 6 \end{pmatrix}$		$\begin{pmatrix} -4 & -k \\ 3 & 6 \end{pmatrix}$	M1	
	3K - 24 (3 0)		Correct A ⁻¹	A1	(3)
(b)	$ \left\{ \mathbf{A}^2 = \right\} \begin{pmatrix} 36 - 3k & 6k - 4k \\ -18 + 12 & -3k + 16 \end{pmatrix} \begin{cases} = \begin{pmatrix} 36 - 6k - 4k \\ -6k - 6k - 4k \end{pmatrix} \end{cases} $	3k 2k -3k+16)	Correct A ² which can be un-simplified or simplified	B1	(3)
	(36-3k 2k) 2 (-4 -	k) (5 9)			(1)
(c)		$\begin{bmatrix} 1 \\ 5 \end{bmatrix} = \begin{bmatrix} 3 \\ -3 \\ -5 \end{bmatrix}$			
	• $36-3k-\frac{12}{2k-24}=5$ • $2k-\frac{12}{2k-24}=5$	$\frac{3k}{2k-24} = 9$			
	• $36-3k - \frac{12}{3k-24} = 5$ • $2k - \frac{9}{3k-24} = -3$	3k - 24 + $16 + \frac{18}{3} = -1$	-5		
	3k-24 Either	3k - 24			
	• attempts to form an equation for (their A	$(\mathbf{A}^2) + 3(\text{their }\mathbf{A}^{-1})$	$=$ $\begin{pmatrix} 5 & 9 \\ & & \end{pmatrix}$ in k		
	• or attempts to add an element of (their A		$\begin{pmatrix} -3 & -3 \end{pmatrix}$	M1	
	and equates to the corresponding elemen				
	$\left\{ \text{e.g. } -6 + \frac{9}{3k - 24} = -3 \right\} \implies k = 9$		Independent on the previous M mark yes their equation to give $k =$	dM1	
	$\begin{bmatrix} 6.5 & 3k - 24 \end{bmatrix} \xrightarrow{3} k$		Final answer of $k = 9$ <i>only</i>	A1	
	Note: Parts (ii)(a) and (and (ii)(b) can be marked together			(3)
(ii)(a)	Please refer to the notes on the nex		rking (ii)(a) and (ii)(b)		
(ii)(a)			Attempts $p = \pm \frac{1}{2} \pm \left(\sqrt{3}\right) \left(\frac{\sqrt{3}}{2}\right)$	M1	
	$ -p\sin\theta = -\sqrt{3} , p\cos\theta = -1 $		or uses a full method of	1,11	
	$p = \sqrt{(\pm\sqrt{3})^2 + (-1)^2} = 2$	1	trigonometry to find $p =$		
	$0 = \frac{-\sqrt{3}}{-\sin"120^{\circ"}} = 2 \text{ or } p = \frac{-\sqrt{3}}{\cos"}$	$\frac{-1}{120^{\circ"}} = 2$	p = 2 only	A1	
(b)	. 5				(2)
(b)	$\cos \theta = -\frac{1}{2}, \sin \theta = \frac{\sqrt{3}}{2}, \tan \theta = -\sqrt{3}$	_	ry to find an expression or value s in the range (1.57, 3.14) or	M1	
	• $\Rightarrow \theta = 120^{\circ}$		4, -4.71) or (-180°, -270°)	1411	
	$\bullet \implies \theta = 180 - \sin^{-1}\left(\frac{\sqrt{3}}{2}\right) = 120^{\circ}$		120° or -240° or $\frac{2\pi}{3}$ or $-\frac{4\pi}{3}$	A1	
	$\bullet \Rightarrow \theta = 180 - \tan^{-1}\left(\sqrt{3}\right) = 120^{\circ}$		or awrt 2.09 or awrt -4.19		
					(2) 11
L					11

Winter 2018 www.mystudybro.com
Past Paper (Mark Scheme) This resource was created and owned by Pearson Edexcel

Mathematics F1 WFM01

		Question 7 Notes		
7. (i)(c)	Note	Give 1 st M1 for $ \begin{pmatrix} 36 - 3k - \frac{12}{3k - 24} & 2k - \frac{3k}{3k - 24} \\ -6 + \frac{9}{3k - 24} & -3k + 16 - \frac{18}{3k - 24} \end{pmatrix} = \begin{pmatrix} 5 & 9 \\ -3 & -5 \end{pmatrix} $		
	Note	• $36-3k - \frac{12}{3k-24} = 5 \rightarrow 3k^2 - 55k + 252 = 0 \rightarrow (k-9)(3k-28) = 0 \rightarrow k = 9, \frac{28}{3}$		
		• $2k - \frac{3k}{3k - 24} = 9 \rightarrow k^2 - 13k + 36 = 0 \rightarrow (k - 9)(k - 4) = 0 \rightarrow k = 9, 4$		
		$\bullet -6 + \frac{9}{3k - 24} = -3 \to k = 9$		
		• $-3k + 16 - \frac{18}{3k - 24} = -5 \rightarrow k^2 - 15k + 54 = 0 \rightarrow (k - 9)(k - 6) = 0 \rightarrow k = 9, 6$		
	Note	Uses a correct element equation in part (c) leading to $k = 9$ is M1 dM1 A1 even if they have followed through an incorrect \mathbf{A}^{-1} in (i)(a) or an incorrect \mathbf{A}^{2} in (ii)(b).		
	Note	Give M0 dM0 A0 for an incorrect method of $36 - 3k - 4 = 5 \Rightarrow k = 9$		
(ii)	Note	$\mathbf{M} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & p \end{pmatrix} = \begin{pmatrix} -\frac{1}{2} & -\sqrt{3} \\ \frac{\sqrt{3}}{2} & -1 \end{pmatrix} \Rightarrow \begin{pmatrix} \cos \theta & -p \sin \theta \\ \sin \theta & p \cos \theta \end{pmatrix} = \begin{pmatrix} -\frac{1}{2} & -\sqrt{3} \\ \frac{\sqrt{3}}{2} & -1 \end{pmatrix}$		
	Note	IMPORTANT NOTE		
		Give (ii)(a) M0A0 (b) M0A0 for a method of $\mathbf{M} = \begin{pmatrix} 1 & 0 \\ 0 & p \end{pmatrix} \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} = \begin{pmatrix} -\frac{1}{2} & -\sqrt{3} \\ \frac{\sqrt{5}}{2} & -1 \end{pmatrix} \Rightarrow \begin{pmatrix} \cos \theta & -\sin \theta \\ p \sin \theta & p \cos \theta \end{pmatrix} = \begin{pmatrix} -\frac{1}{2} & -\sqrt{3} \\ \frac{\sqrt{5}}{2} & -1 \end{pmatrix}$ leading to (ii)(a) $p =$, (ii)(b) $\theta =$		
(ii)(a)	Note	$\det(\mathbf{M}) = \left(-\frac{1}{2}\right)(-1) - \left(-\sqrt{3}\right)\left(\frac{\sqrt{3}}{2}\right) = 2 \text{ followed by } p = \sqrt{2} \text{ is M0 A0}$		
	Note	$p = \det(\mathbf{M}) = \left(-\frac{1}{2}\right)(-1) - \left(-\sqrt{3}\right)\left(\frac{\sqrt{3}}{2}\right) = 2 \text{ is M1 A1}$		
	Note	$p = \frac{\sqrt{(\pm\sqrt{3})^2 + (-1)^2}}{\sqrt{\left(-\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2}} = 2 \text{ is M1 A1}$		

www.mystudybro.com

■ Past Paper

This resource was created and owned by Pearson Edexcel

WFM01

Leave blank

8. (i) A sequence of numbers is defined by

$$u_1 = 3$$

$$u_{n+1} = u_n + 3n - 2 \qquad n \geqslant 1$$

Prove by induction that, for all positive integers n,

$$u_n = \frac{3}{2}n^2 - \frac{7}{2}n + 5 \tag{5}$$

(ii) Prove by induction that, for all positive integers n,

$$f(n) = 3^{2n+3} + 40n - 27$$
 is divisible by 64

(6)

28

Winter 2018 www.mystudybro.com **Mathematics F1** Past Paper (Mark Scheme) This resource was created and owned by Pearson Edexcel WFM01 **Ouestion** Marks Scheme **Notes** Number (ii) $f(n) = 3^{2n+3} + 40n - 27$ (i) $u_1 = 3$, $u_{n+1} = u_n + 3n - 2$, $u_n = \frac{3}{2}n^2 - \frac{7}{2}n + 5$ 8. is divisible by 64 Uses $u_n = \frac{3}{2}n^2 - \frac{7}{2}n + 5$ to show that $u_1 = 3$ n=1, $u_1 = \frac{3}{2} - \frac{7}{2} + 5 = 3$ **B**1 (i) (Assume the result is true for n = k) Finds u_{k+1} by attempting to substitute $\{u_{k+1} = u_k + 3k - 2 \Longrightarrow \}$ $u_k = \frac{3}{2}k^2 - \frac{7}{2}k + 5$ into $u_{k+1} = u_k + 3k - 2$. $u_{k+1} = \frac{3}{2}k^2 - \frac{7}{2}k + 5 + 3k - 2 \left\{ = \frac{3}{2}k^2 - \frac{1}{2}k + 3 \right\}$ M1 Condone one slip. dependent on the previous M mark. $= \frac{3}{2}(k+1)^2 - 3k - \frac{3}{2} - \frac{1}{2}k + 3$ dM1 Attempts to write u_{k+1} in terms of (k+1) $=\frac{3}{2}(k+1)^2-\frac{7}{2}k+\frac{3}{2}$ $= \frac{3}{2}(k+1)^2 - \frac{7}{2}(k+1) + 5$ Uses algebra to achieve this result with no errors **A**1 If the result is true for n = k, then it is true for n = k + 1. As the result has been shown to be A1 cso true for n = 1, then the result is true for all $n \in \mathbb{Z}^+$ **(5)** $f(1) = 3^5 + 40 - 27 = 256$ f(1) = 256 is the minimum (ii) **B**1 $f(k+1) - f(k) = (3^{2(k+1)+3} + 40(k+1) - 27) - (3^{2k+3} + 40k - 27)$ Way 1 Attempts f(k+1) - f(k)M1 $f(k+1) - f(k) = 8(3^{2k+3}) + 40$ $= 8(3^{2k+3} + 40k - 27) - 64(5k - 4)$ $8(3^{2k+3} + 40k - 27)$ or 8f(k)A₁ or = $8(3^{2k+3} + 40k - 27) - 320k + 256$ -64(5k-4) or -320k+256**A**1 dependent on at least one of the previous f(k+1) = 8f(k) - 64(5k-4) + f(k)accuracy marks being awarded. or f(k+1) = 8f(k) - 320k + 256 + f(k)dM1 Makes f(k + 1) the subject and expresses it in or $f(k+1) = 9(3^{2k+3} + 40k - 27) - 320k + 256$ terms of f(k) or $(3^{2k+3} + 40k - 27)$ If the result is true for n = k, then it is true for n = k + 1, As the result has been shown to be A1 cso true for n = 1, then the result is true for all $n \in \mathbb{Z}^+$ **(6)** (ii)

Way 2

		(0)
$f(1) = 3^5 + 40 - 27 = 256$	f(1) = 256 is the minimum	B1
$f(k+1) = 3^{2(k+1)+3} + 40(k+1) - 27$	Attempts $f(k+1)$	M1
$f(k+1) = 9(3^{2k+3}) + 40k + 13$		
$= 9(3^{2k+3} + 40k - 27) - 64(5k - 4)$	$9(3^{2k+3} + 40k - 27)$ or $9f(k)$	A1
or = $9(3^{2k+3} + 40k - 27) - 320k + 256$	-64(5k-4) or $-320k+256$	A1
$f(k+1) = 9f(k) - 64(5k-4)$ or $f(k+1) = 9f(k) - 320k + 256$ or $f(k+1) = 9(3^{2k+3} + 40k - 27) - 320k + 256$	dependent on at least one of the previous accuracy marks being awarded. Makes $f(k+1)$ the subject and expresses it in terms of $f(k)$ or $(3^{2k+3} + 40k - 27)$	dM1
If the result is true for $n = k$, then it is true for $n = k$	a = k + 1, As the result has been shown to be	

true for n = 1, then the result is true for all $n \in \mathbb{Z}^+$

A1 cso

144		204	0
vv	inter	Z U I	Ō

www.mystudybro.com

Mathematics F1

	(Mark Scher	me) This resource was created and		arson	Edexcel	WFM01
Question Number		Scheme	Notes			Marks
8.		(ii) $f(n) = 3^{2n+3} + 40n - 1$	– 27 is divisible by 64			
(ii)		General Method: Using $f(k+1)$	- $mf(k)$; when	re m i	s an integer	
Way 3	$f(1) = 3^5 + 40 - 27 = 256$ $f(1) = 256$ is the minimum				B1	
	f(k+1)	$-mf(k) = (3^{2(k+1)+3} + 40(k+1) - 27) - m(k+1) - 27$	$3^{2k+3} + 40k - 2$	27)	Attempts $f(k+1) - mf(k)$	M1
	f(k+1)	$-mf(k) = (9-m)(3^{2k+3}) + 40k(1-m) + ($	13 + 27m)			
	= (9	$(9-m)(3^{2k+3}+40k-27)-64(5k-4)$	(9-m)	(3^{2k+3})	3 + 40k - 27) or $(9 - m)f(k)$	A1
	or = (9)	$(2-m)(3^{2k+3}+40k-27)-320k+256$		_	64(5k-4) or $-320k+256$	A1
	`	dependent on at least one of the previous accuracy marks being awarded $f(k) = (9-m)f(k) - 320k + 256 + mf(k)$ Makes $f(k+1)$ the subject and expresses in terms of $f(k)$ or $f(k) = (2^{2k+3} + 40k - 27)$			acy marks being awarded.	dM1
	If the t	result is true for $n = k$, then it is true for k				
	II the I					A1 cso
		true for $n = 1$, then the result			·	
(ii)		General Method: Usi	$\log f(k+1) - i$	nt (k)		
Way 4	$f(1) = 3^5 + 40 - 27 = 256$		1-2k+2 +0.1		f(1) = 256 is the minimum	B1
		$-mf(k) = (3^{2(k+1)+3} + 40(k+1) - 27) - m($		27)	Attempts $f(k+1) - mf(k)$	M1
	f(k+1)	$-mf(k) = (9-m)(3^{2k+3}) + 40k(1-m) + ($	13 + 27m)	1	212	
	m = -55	$55 \Rightarrow f(k+1) + 55f(k) = 64(3^{2k+3}) - 2240k + 1472$ $m = -55 \text{ and } 64(3^{2k+3})$		A1		
		m = -55 and $-2240k + 1472$			A1	
	$f(k+1) = 64(3^{2k+3}) - 2240k + 1472 - 55f(k)$ or $f(k+1) = 64(3^{2k+3}) - 64(35k - 23) - 55f(k)$ dependent on at least one of previous accuracy marks to awarded. Makes $f(k+1)$ the sum and expresses it in terms of			ous accuracy marks being Makes $f(k + 1)$ the subject	dM1	
	If the 1	result is true for $n = k$, then it is true for n	n = k + 1, As the	he res	ult has been shown to be	A 1
	true for $n = 1$, then the result is true for all $n \in \mathbb{Z}^+$				A1 cso	
			stion 8 Notes			
(i) & (ii)	Note Final A1 for parts (i) and (ii) is dependent on all previous marks being scored in that part. It is gained by candidates conveying the ideas of all four underlined points either at the end of their solution or as a narrative in their solution.					
(i)	3 2 7 3 2 1					
		to $u_{k+1} = \frac{3}{2}(k+1)^2 - \frac{7}{2}(k+1) + 5$ with		liate s	tage involving either	
	• writing u_{k+1} as a function of $(k+1)$					
	• or writing u_{k+1} as $u_{k+1} = \frac{3}{2}k^2 + 3k + \frac{3}{2} - \frac{7}{2}k - \frac{7}{2} + 5$					
is dM1A0A0						
	Note Some candidates will write down $u_{k+1} = \frac{3}{2}k^2 - \frac{7}{2}k + 5 + 3k - 2 \text{ (give 1st M1)} \text{ and simplify this to } u_{k+1} = \frac{3}{2}k^2 - \frac{1}{2}k + 3$					
		They will then write $u_{k+1} = \frac{3}{2}(k+1)^2 - \frac{3}{2}(k+1)^2$	_		2 2	how tha
		$u_{k+1} = \frac{3}{2}(k+1)^2 - \frac{7}{2}(k+1) + 5 = \frac{3}{2}(k+1)^2 - \frac{3}{2}(k$	2			

Mathematics F1

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

	Question 8 Notes Continued					
8. (ii)	Note Some candidates may set $f(k) = 64M$ and so may prove the following general result					
		• $\{f(k+1) = 9f(k) - 64(5k-4)\} \Rightarrow f(k+1) =$	= 576	M-64(5k-4)		
		• $\{f(k+1) = 9f(k) - 320k + 256\} \Rightarrow f(k+1)$	= 576	6M - 320k + 256		
	Note	Note $f(n) = 3^{2n+3} + 40n - 27$ can be rewritten as either $f(n) = 27(3^{2n}) + 40n - 27$				
		or $f(n) = 27(9^n) + 40n - 27$				
	Note	Note In part (ii), Way 4 there are many alternatives where candidates focus on isolating				
		$\beta(3^{2k+3})$ where β is a multiple of 64. Listed below are some alternative results:				
		• $f(k+1) = 128(3^{2k+3}) - 119f(k) + 4800k - 3200$				
	• $f(k+1) = -64(3^{2k+3}) + 73f(k) - 2880k + 1984$					
		See below for how these are derived.				
8. (ii)	(ii) $f(n) = 3^{2n+3} + 40n - 27$ is divisible by 64					
	The A1A1dM1 marks for Alternatives using $f(k+1) - mf(k)$					
Way 4.1	$f(k+1) = 9(3^{2k+3}) + 40k + 13$					
	=	$= 128(3^{2k+3}) - 119(3^{2k+3}) + 40k + 13$				
	$= 128(3^{2k+3}) - 119[3^{2k+3} + 40k - 27] + 4800k - 3200$ $f(k+1) = 128(3^{2k+3}) - 119f(k) + 4800k - 3200$			$m = -119$ and $128(3^{2k+3})$	A1	
			m	= -119 and $4800k - 3200$	A1	
			as before		dM1	
	or $f(k+1) = 128(3^{2k+3}) - 119[3^{2k+3} + 40k - 27] + 4800k - 3200$			as before		
Way 4.2	$f(k+1) = 9(3^{2k+3}) + 40k + 13$					
	=	$= -64(3^{2k+3}) + 73(3^{2k+3}) + 40k + 13$				
	$= -64(3^{2k+3}) + 73[3^{2k+3} + 40k - 27] - 2880k + 1984$		$m = 73$ and $-64(3^{2k+3})$		A1	
			m	=73 and $-2880k + 1984$	A1	
	f(k+	$1) = -64(3^{2k+3}) + 73f(k) - 2880k + 1984$		as before	dM1	
	or $f(k+1) = -64(3^{2k+3}) + 73[3^{2k+3} + 40k - 27] - 2880k + 1984$			as before	UIVI I	