Mathematics F1

Past Paper

This resource was created and owned by Pearson Edexcel

۱۸	/E	NΛ	Λ1

Surname	Other nan	nes
Pearson Edexcel International Advanced Level	Centre Number	Candidate Number
Further Pu Mathema	tics F1	
Advanced/Advance	d Subsidiarv	
Monday 14 May 2018 – After Time: 1 hour 30 minutes		Paper Reference WFM01/01

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B). Coloured pencils and highlighter pens must not be used.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information

- The total mark for this paper is 75.
- The marks for each question are shown in brackets
 use this as a quide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

■ Past Paper

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

WFM01

Leave blank

		n	n
1.	Use the standard results for	$\sum r$ and for	$\sum r^2$ to show that, for all positive integers n ,
		r=1	r=1

$$\sum_{r=1}^{n} r(r+3) = \frac{n}{a}(n+1)(n+b)$$

where a and b are integers to be four	nd.
---------------------------------------	-----

(4)

DO NOT WRITE IN THIS AREA

WFM01

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

June 2018

WFM01 Further Pure Mathematics F1 **Mark Scheme**

Question Number		Scheme	Notes		Marks	
1.	$\sum_{r=1}^{n} r(r +$	$3) = \sum_{r=1}^{n} r^2 + 3 \sum_{r=1}^{n} r$				
		$1)(2n+1) + 3\left(\frac{1}{2}n(n+1)\right)$	Attempts to expand $r(r+3)$ and attempts to substitute at least one correct standard formula into their resulting expression.		M1	
				Correct expression (or equivalent)		
	$=\frac{1}{6}n(n+1)$	-1) $[(2n+1)+9]$	dependent on the previous M mark Attempt to factorise at least $n(n+1)$ having attempted to substitute both correct standard formulae.		dM1	
	$=\frac{1}{6}n(n+$	-1)(2n+10)		{this step does not have to be written}		
	$=\frac{n}{3}(n+1)$	(-1)(2n+10) 1)(n+5) or $\frac{1}{3}n(n+1)(n+1)$	5)	Correct completion with no errors. Note: $a = 3, b = 5$	A1	
					(4)	
					4	
	• •	A	4 - 41	Question 1 Notes	1	
1.	Note	Applying e.g. $n = 1$, $n = 2$ to give $a = 3$, $b = 5$ is M0.		e printed equation without applying the standard for A0	nuiae	
	Alt 1	Alt Method 1 (Award the first two marks using the main scheme)				
		Using $\frac{1}{3}n^3 + 2n^2 + \frac{5}{3}n = \frac{1}{a}n^3 + \left(\frac{b+1}{a}\right)n^2 + \frac{b}{a}n$ o.e.				
	dM1	Equating coefficients to fit Finds $a = 3$ and $b = 5$	and coefficients to find both $a =$ and $b =$ and at least one correct of $a = 3$ or $b = 5$		3 or $b=5$	
	A14.2					
	Alt 2	_		et two marks using the main scheme)		
		$\frac{1}{6}n(n+1)(2n+1) + \frac{3}{2}n(n-1)$	+1) ≡	$\frac{n}{a}(n+1)(n+b)$		
	dM1	_		is identity o.e. and solves to find both $a =$ and $b =$	·	
		and at least one correct of	a=3	, b = 5		
		Note: $n = 1$ gives $4 = \frac{2(1)^n}{n!}$	<u>l+b)</u>	or $2a - b = 1$ and $n = 2$ gives $14 = \frac{6(2+b)}{a}$ or $7a$	-3b = 6	
	A1	Finds $a=3$ and $b=5$	a			
·	Note	Allow final dM1A1 for $\frac{1}{3}n^3 + 2n^2 + \frac{5}{3}n$ or $\frac{1}{3}(n^3 + 6n^2 + 5n) \rightarrow \frac{n}{3}(n+1)(n+5)$				
		with no incorrect working				
	Note	A correct proof $\sum_{r=1}^{n} r(r+3) = \frac{n}{3}(n+1)(n+5)$ followed by stating an incorrect e.g. $a=5, b=3$			a = 5, b = 3	
		is M1A1dM1A1 (ignore s	ubseqı	uent working)		
	Note	Give A0 for $\frac{2}{6}n(n+1)(n+1)$	5) wit	thout reference to $a = 3$ or $\frac{n}{3}(n+1)(n+5)$ or $\frac{1}{3}n(n+1)$	+1)(n+5)	

WFM01

Past Paper

This resource was created and owned by Pearson Edexcel

Leave blank

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

- 2. The transformation represented by the 2×2 matrix **P** is an anticlockwise rotation about the origin through 45 degrees.
 - (a) Write down the matrix P, giving the exact numerical value of each element.

(1)

$$\mathbf{Q} = \begin{pmatrix} k\sqrt{2} & 0 \\ 0 & k\sqrt{2} \end{pmatrix}$$
, where k is a constant and $k > 0$

(b) Describe fully the single geometrical transformation represented by the matrix **Q**.

2)

The combined transformation represented by the matrix PQ transforms the rhombus R_1 onto the rhombus R_2 .

The area of the rhombus R_1 is 6 and the area of the rhombus R_2 is 147

(c) Find the value of the constant k.

(4)

Summer	2018
Guillillei	2010

Obtains k = 3.5, o.e.

A1

(4)

www.mystudybro.com **Mathematics F1** Past Paper (Mark Scheme) This resource was created and owned by Pearson Edexcel WFM01 **Ouestion** Scheme Marks Notes Number 2. P represents an anti-clockwise rotation about the origin through 45 degrees $\begin{vmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{vmatrix} \text{ or e.g. } \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$ Correct matrix which is **B**1 (a) expressed in exact surds **(1)** Enlargement M1 (b) Enlargement or enlarge About (0,0) or about O or about the origin and scale or factor or times and $k\sqrt{2}$ Centre (0, 0) with scale factor $k\sqrt{2}$ A1 **Note:** Allow $\sqrt{2k^2}$ in place of $k\sqrt{2}$ **Note:** Give M0A0 for combinations of transformations **(2)** Multiplies their matrix from (c) Way 1 part (a) by **Q** [either way round] $\{\mathbf{PQ} = \} \begin{pmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix} \begin{pmatrix} k\sqrt{2} & 0 \\ 0 & k\sqrt{2} \end{pmatrix} = \begin{pmatrix} k & -k \\ k & k \end{pmatrix}$ M1 and applies "ad - bc" to the resulting matrix to give $2k^2$ or states | their det \mathbf{PQ} | = $2k^2$ **A**1 $\{\det \mathbf{PQ} = \}$ $(k)(k) - (-k)(k) = 2k^2$ Condone $\{\det \mathbf{PQ} = \} k^2 + k^2$ 6(their determinant) = 147 $6(2k^2) = 147$ or $2k^2 = \frac{147}{6}$ M1or puts their determinant equal to $\frac{147}{6}$ $\left\{ \Rightarrow k^2 = \frac{49}{4} \Rightarrow \right\} k = \frac{7}{2}$ Obtains k = 3.5, o.e. A₁ (4)applies "ad - bc" to **Q** (c) $\det \mathbf{Q} = (k\sqrt{2})(k\sqrt{2}) - (0)(0)$ or $\det \mathbf{Q} = (k\sqrt{2})(k\sqrt{2})$ Way 2 M1or applies $(k\sqrt{2})^2$ and deduces that $\det \mathbf{PQ} = 2k^2$ $\{\det \mathbf{P} = 1 \implies \det \mathbf{PQ} = (1)(2k^2) = 2k^2$ or states | their det PQ| = $2k^2$ A₁ or $\det \mathbf{Q} = 2k^2$ or $\det \mathbf{Q} = 2k^2$ 6(their det(**PQ**)) = 147 or (their det(**PQ**)) = $\frac{147}{6}$ $6(2k^2) = 147$ or $2k^2 = \frac{147}{6}$ M1 or 6(their det(\mathbf{Q})) = 147 or (their det(\mathbf{PQ})) = $\frac{147}{6}$ $\left\{ \Rightarrow k^2 = \frac{49}{4} \Rightarrow \right\} k = \frac{7}{2}$

Summer 2018

www.mystudybro.com

Mathematics F1

Past Paper (Mark Scheme) This resource was created and owned by Pearson Edexcel WFM01 **Question 2 Notes 2.** (b) Note "original point" is not acceptable in place of the word "origin". "expand" is not acceptable for M1 Note "enlarge x by $k\sqrt{2}$ and no change in y" is M0A0 Note Obtaining $k = \pm 3.5$ with no evidence of k = 3.5 {only} is A0 Note (c) Give M1A1M0A0 for writing down $147(2k^2) = 6$ or $\frac{1}{2k^2} = \frac{147}{6}$ or $6\left(\frac{1}{2k^2}\right) = 147$, o.e. Wav 2 Note 1 with no other supporting working. Give M0A0M1A0 for writing $\det \mathbf{Q} = \frac{1}{k^2 - (-k^2)}$ or $\frac{1}{2k^2}$, followed by $6\left(\frac{1}{2k^2}\right) = 147$ Way 2 Note 2 Allow M1A1 for an incorrect rotation matrix **P**, leading to det $\mathbf{PQ} = 2k^2$ Note Allow M1A1M1A1 for an incorrect rotation matrix **P**, leading to det **PQ** = $2k^2$ and k = 3.5, o.e. Note Using the scale factor of enlargement to write down $k\sqrt{2} = \sqrt{\frac{147}{6}} \Rightarrow k = 3.5$ is M1A1dM1A1 Note Using the scale factor of enlargement to write down $k\sqrt{2} = \sqrt{\frac{6}{147}}$ is M1A1dM0 Note

This resource was created and owned by Pearson Edexcel

Leave blank

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

3.

Figure 1

Figure 1 shows the parabola C which has cartesian equation $y^2 = 6x$. The point S is the focus of *C*.

(a) Find the coordinates of the point S.

(1)

The point P lies on the parabola C, and the point Q lies on the directrix of C. PQ is parallel to the x-axis with distance PQ = 14

(b) State the distance SP.

(1)

Given that the point P is above the x-axis,

(c) find the exact coordinates of P.

(3)

Summer 2018 www.mystudybro.com
Past Paper (Mark Scheme) This resource was created and owned by Pearson Edexcel

WFM01

Question Number	Scheme	Scheme		Notes	
3.	$C: y^2 = 6x$; S is the focus of C; $y^2 = 4ax$; $P(at^2, 2at)$; Q lies on the directrix of C. $PQ = 14$				
(a)	$\{a = 1.5 \Rightarrow\}$ S has coordinates $(1.5, 0)$		$(1.5, 0) \text{ or } \left(\frac{3}{2}, 0\right) \text{ or } \left(\frac{6}{4}, 0\right)$		B1 cao
(1)	Note: You can recover this ma	rk for λ	S(1.5, 0) stated e		(1)
(b)	{ PQ is parallel to the x -axis \Rightarrow } Focus-directrix Property $\Rightarrow SP \{= PQ\}$	=14		SP = 14 or 14 stated by itself in (b)	B1 cao
	Note: $PQ = 14$ stated by		ı vithout reference		(1)
(c) Way 1	$\left\{ \text{directrix } x = -\frac{3}{2} \& PQ = 14 \Rightarrow \right\} x_P$			x = 14 – their " a "	M1
	$y_P^2 = 6(12.5) \Rightarrow y_P = \dots$		_	endent on the previous M mark $\sin x$ into $y^2 = 6x$ and finds $y =$	dM1
	Either $x = 12.5$, $y = 5\sqrt{3}$ or $(12.5, 5\sqrt{3})$	(3)	Correct a	and paired. Accept $(12.5, \sqrt{75})$	A1
					(3)
	$ \begin{array}{c c} & & P \\ & & & y \text{ or } \sqrt{6x} \\ \hline & & & & \\ & & & & \\ & & & & \\ & & & &$				
(c) Way 2	$(x-1.5)^{2} + (6x) = 14^{2}$ $\Rightarrow x^{2} + 3x - 193.75 = 0 \Rightarrow x = \dots$			chagoras to $x-"a"$, $\sqrt{6x}$ and 14, and solves quadratic equation in x to give $x=$	M1
				As in Way 1	dM1 A1 (3)
(c) Way 3	$11^2 + y^2 = 14^2 \implies y = \dots$		Applies Py	thagoras to $14-"2a"$, y and 14, and solves to give $y =$	M1
	$\left(\sqrt{75}\right)^2 = 6x \Rightarrow x = \dots$		_	endent on the previous M mark eir y into $y^2 = 6x$ and finds $x =$	dM1
	Either $x = 12.5, y = 5\sqrt{3}$ or $(12.5, 5\sqrt{3})$	(3)		and paired. Accept $(12.5, \sqrt{75})$	A1
	,	,		, , ,	(3)
(c) Way 4	$\Rightarrow 2.25t^4 + 4.5t^2 - 193.75 = 0$ { or $9t^4 + 18t^2 - 775 = 0$ }	forms and solves a quadratic equation in t^2 or $9t^4 + 18t^2 - 775 = 0$ } forms and solves a quadratic equation in t^2 to give $t^2 =$ or $t =$, and finds at leasts one of		M1	
	$\Rightarrow t^2 = \frac{25}{3} \Rightarrow t = \frac{5\sqrt{3}}{3}$ $\Rightarrow x = 1.5 \left(\frac{5\sqrt{3}}{3}\right)^2, y = 3 \left(\frac{5\sqrt{3}}{3}\right)$		-	Finds both $x =$ and $y =$ and $x = 1.5$ and $y = 2$ and	dM1
	Either $x = 12.5, y = 5\sqrt{3}$ or $(12.5, 5\sqrt{3})$	3)	Correct a	and paired. Accept $(12.5, \sqrt{75})$	A1
					(3)
					5

Summer	2018
Julillie	2010

Mathematics F1

$ \begin{array}{l} \textbf{(c)} \\ \textbf{Way 6} \\ \hline \\ & \left\{S(1.5,0), P\left(\frac{y^2}{6},y\right), SP = 14 \Rightarrow\right\} \\ & \left(\frac{1}{6}y^2 - \frac{3}{2}\right)^2 + y^2 = 14^2 \Rightarrow y = \dots \\ & \left\{y^4 + 18y^2 - 6975 = 0\right\} \\ \hline \\ & \left(\sqrt{75}\right)^2 = 6x \Rightarrow x = \dots \\ \hline \\ & \textbf{Either } x = 12.5, \ y = 5\sqrt{3} \ \textbf{ or } \left(12.5, 5\sqrt{3}\right) \\ \hline \end{array} \right. \begin{array}{l} \textbf{Applies Pythagoras to } \frac{y^2}{6} - \text{"1.5"}, \ y \ \text{and } 14, \\ \text{and solves to give } y = \dots \\ \text{and solves to give } y = \dots \\ \text{Substitutes their y into } y^2 = 6x \ \text{and finds } x = \dots \\ \hline \\ \textbf{Correct and paired. Accept } \left(12.5, \sqrt{75}\right) \ \textbf{A1} \\ \hline \end{array} $	Past Paper	(Mark Scheme) This resource was created and owned by Pearson Edexcel WFM0						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-		Scheme		Notes	Marks		
Way 5 $\begin{cases} x_P = \frac{1}{2}t^r, x_Q = -\frac{1}{2}, PQ = 14 \Rightarrow \\ (1.5t^21.5) = 14 \Rightarrow 1.5t^2 = 12.5 \\ \Rightarrow t^2 = \frac{25}{3} \Rightarrow t = \frac{5\sqrt{3}}{3} \\ \Rightarrow x = 1.5 \left(\frac{5\sqrt{3}}{3}\right)^2, y = 3\left(\frac{5\sqrt{3}}{3}\right) \end{cases}$ equation "1.5" $t^2 = -1.5$ " = 14 to give $t^2 =$ or $t =$, and finds at leasts one of $x =$ or $y =$ by using $x = "1.5"t^2$ or $y = 2("1.5")t$ dM1 Either $x = 12.5, y = 5\sqrt{3}$ or $(12.5, 5\sqrt{3})$ Correct and paired. Accept $(12.5, \sqrt{75})$ A1 $\begin{cases} S(1.5, 0), P\left(\frac{y^2}{6}, y\right), SP = 14 \Rightarrow \\ \left(\frac{1}{6}y^2 - \frac{3}{2}\right)^2 + y^2 = 14^2 \Rightarrow y = \end{cases}$ Applies Pythagoras to $\frac{y^2}{6} = "1.5", y \text{ and } 14, \\ (1.5t^21.5) = 14 \Rightarrow 1.5t^2 = 12.5 \end{cases}$ Applies Pythagoras to $\frac{y^2}{6} = "1.5", y \text{ and } 14, \\ \text{and solves to give } y = \end{cases}$ Applies Pythagoras to $\frac{y^2}{6} = "1.5", y \text{ and } 14, \\ \text{and solves to give } y = \end{cases}$ Substitutes their $y \text{ into } y^2 = 6x \text{ and finds } x = \end{cases}$ And Either $x = 12.5, y = 5\sqrt{3}$ or $(12.5, 5\sqrt{3})$ Correct and paired. Accept $(12.5, \sqrt{75})$ A1 Either $x = 12.5, y = 5\sqrt{3}$ or $(12.5, 5\sqrt{3})$ Correct and paired. Accept $(12.5, \sqrt{75})$ A1 Question 3 Notes Note Obtaining both $(12.5, 5\sqrt{3})$ and $(12.5, -5\sqrt{3})$ with no evidence of only $(12.5, 5\sqrt{3})$ is A0	3.	$C: y^2 = 6$	$5x$; S is the focus of C; y^2	=4ax; P($(at^2, 2at)$; Q lies on the directrix of C. $PQ = 14$			
$\Rightarrow x = 1.5 \left(\frac{5\sqrt{3}}{3}\right)^2, \ y = 3 \left(\frac{5\sqrt{3}}{3}\right)$ $\Rightarrow x = 1.5 \left(\frac{5\sqrt{3}}{3}\right)^2, \ y = 3 \left(\frac{5\sqrt{3}}{3}\right)$ $\Rightarrow x = 1.5 \left(\frac{5\sqrt{3}}{3}\right)^2, \ y = 3 \left(\frac{5\sqrt{3}}{3}\right)$ $\Rightarrow x = 1.5 \left(\frac{5\sqrt{3}}{3}\right)^2, \ y = 3 \left(\frac{5\sqrt{3}}{3}\right)$ $\Rightarrow x = 1.5 \left(\frac{5\sqrt{3}}{3}\right)^2, \ y = 3 \left(\frac{5\sqrt{3}}{3}\right)$ $\Rightarrow x = 1.5 \left(\frac{5\sqrt{3}}{3}\right)^2, \ y = 3 \left(\frac{5\sqrt{3}}{3}\right)$ $\Rightarrow x = 1.5 \left(\frac{5\sqrt{3}}{3}\right)^2, \ y = 3 \left(\frac{5\sqrt{3}}{3}\right)$ $\Rightarrow x = 1.5 \left(\frac{5\sqrt{3}}{3}\right)^2, \ y = 3 \left(\frac{5\sqrt{3}}{3}\right)$ $\Rightarrow x = 1.5 \left(\frac{5\sqrt{3}}{3}\right)^2, \ y = 3 \left(\frac{5\sqrt{3}}{3}\right)$ $\Rightarrow x = 1.5 \left(\frac{5\sqrt{3}}{3}\right)^2, \ y = 3 \left(\frac{5\sqrt{3}}{3}\right)$ $\Rightarrow x = 1.5 \left(\frac{5\sqrt{3}}{3}\right)^2, \ y = 3 \left(\frac{5\sqrt{3}}{3}\right)$ $\Rightarrow x = 1.5 \left(\frac{5\sqrt{3}}{3}\right)^2, \ y = 3 \left(\frac{5\sqrt{3}}{3}\right)$ $\Rightarrow x = 1.5 \left(\frac{5\sqrt{3}}{3}\right)^2, \ y = 3 \left(\frac{5\sqrt{3}}{3}\right)$ $\Rightarrow x = 1.5 \left(\frac{5\sqrt{3}}{3}\right)^2, \ y = 3 \left(\frac{5\sqrt{3}}{3}\right)$ $\Rightarrow x = 1.5 \left(\frac{5\sqrt{3}}{3}\right)^2, \ y = 3 \left(\frac{5\sqrt{3}}{3}\right)$ $\Rightarrow x = 1.5 \left(\frac{5\sqrt{3}}{6}\right)$ $\Rightarrow x = 1.5 \left(5$	(c) Way 5	$(1.5t^2$	$1.5) = 14 \implies 1.5t^2 = 12.5$	equation	on "1.5" t^2 - "-1.5" = 14 to give t^2 = or t =, and finds at leasts one of			
Way 6 $\begin{cases} S(1.5,0), P\left(\frac{y^2}{6}, y\right), SP = 14 \Rightarrow \} \\ \left(\frac{1}{6}y^2 - \frac{3}{2}\right)^2 + y^2 = 14^2 \Rightarrow y = \dots \\ \left(\sqrt{75}\right)^2 = 6x \Rightarrow x = \dots \end{cases}$ Applies Pythagoras to $\frac{y^2}{6}$ - "1.5", y and 14, and solves to give $y = \dots$ $\left(\sqrt{75}\right)^2 = 6x \Rightarrow x = \dots$ Either $x = 12.5, y = 5\sqrt{3}$ or $\left(12.5, 5\sqrt{3}\right)$ Correct and paired. Accept $\left(12.5, \sqrt{75}\right)$ A1 Question 3 Notes 3. (c) Note Writing coordinates the wrong way round E.g. writing $x = 12.5, y = 5\sqrt{3}$ followed by $(5\sqrt{3}, 12.5)$ is final A0 Note Obtaining both $\left(12.5, 5\sqrt{3}\right)$ and $\left(12.5, -5\sqrt{3}\right)$ with no evidence of only $\left(12.5, 5\sqrt{3}\right)$ is A0		3	3		Finds both $x =$ and $y =$	dM1		
Way 6 $\begin{cases} S(1.5,0), P\left(\frac{y^2}{6}, y\right), SP = 14 \Rightarrow \} \\ \left(\frac{1}{6}y^2 - \frac{3}{2}\right)^2 + y^2 = 14^2 \Rightarrow y = \dots \\ \left(\sqrt{75}\right)^2 = 6x \Rightarrow x = \dots \end{cases}$ Applies Pythagoras to $\frac{y^2}{6}$ - "1.5", y and 14, and solves to give $y = \dots$ $\left(\sqrt{75}\right)^2 = 6x \Rightarrow x = \dots$ Applies Pythagoras to $\frac{y^2}{6}$ - "1.5", y and 14, and solves to give $y = \dots$ $\left(\sqrt{75}\right)^2 = 6x \Rightarrow x = \dots$ Applies Pythagoras to $\frac{y^2}{6}$ - "1.5", y and 14, and solves to give $y = \dots$ $\left(\sqrt{75}\right)^2 = 6x \Rightarrow x = \dots$ Substitutes their y into $y^2 = 6x$ and finds $x = \dots$ dM1 Either $x = 12.5, y = 5\sqrt{3}$ or $(12.5, 5\sqrt{3})$ Correct and paired. Accept $(12.5, \sqrt{75})$ A1 Question 3 Notes 3. (c) Note Writing coordinates the wrong way round E.g. writing $x = 12.5, y = 5\sqrt{3}$ followed by $(5\sqrt{3}, 12.5)$ is final A0 Note Obtaining both $(12.5, 5\sqrt{3})$ and $(12.5, -5\sqrt{3})$ with no evidence of only $(12.5, 5\sqrt{3})$ is A0		Either x	=12.5, $y = 5\sqrt{3}$ or (12.5,	5√3)	Correct and paired. Accept $(12.5, \sqrt{75})$			
Way 6 $\begin{cases} S(1.5, 0), P\left[\frac{3}{6}, y\right], SP = 14 \Rightarrow \\ \left(\frac{1}{6}y^2 - \frac{3}{2}\right)^2 + y^2 = 14^2 \Rightarrow y = \dots \end{cases}$ Applies Pythagoras to $\frac{y^2}{6}$ – "1.5", y and 14, and solves to give $y = \dots$ $\{y^4 + 18y^2 - 6975 = 0\}$ $\left(\sqrt{75}\right)^2 = 6x \Rightarrow x = \dots$ $\left(\sqrt{75}\right)^2 = 6x \Rightarrow x = \dots$ Applies Pythagoras to $\frac{y^2}{6}$ – "1.5", y and 14, and solves to give $y = \dots$ dependent on the previous M mark Substitutes their y into $y^2 = 6x$ and finds $x = \dots$ dM1 Either $x = 12.5, y = 5\sqrt{3}$ or $(12.5, 5\sqrt{3})$ Correct and paired. Accept $(12.5, \sqrt{75})$ A1 Question 3 Notes 3. (c) Note Writing coordinates the wrong way round E.g. writing $x = 12.5, y = 5\sqrt{3}$ followed by $(5\sqrt{3}, 12.5)$ is final A0 Note Obtaining both $(12.5, 5\sqrt{3})$ and $(12.5, -5\sqrt{3})$ with no evidence of only $(12.5, 5\sqrt{3})$ is A0						(3)		
	(c) Way 6	$\left(\frac{1}{6}\right)$	$\left(\frac{1}{6}y^2 - \frac{3}{2}\right)^2 + y^2 = 14^2 \implies y = \dots$		U	M1		
Question 3 Notes 3. (c) Note Writing coordinates the wrong way round E.g. writing $x = 12.5$, $y = 5\sqrt{3}$ followed by $(5\sqrt{3}, 12.5)$ is final A0 Note Obtaining both $(12.5, 5\sqrt{3})$ and $(12.5, -5\sqrt{3})$ with no evidence of only $(12.5, 5\sqrt{3})$ is A0						dM1		
Question 3 Notes 3. (c) Note Writing coordinates the wrong way round E.g. writing $x = 12.5$, $y = 5\sqrt{3}$ followed by $(5\sqrt{3}, 12.5)$ is final A0 Note Obtaining both $(12.5, 5\sqrt{3})$ and $(12.5, -5\sqrt{3})$ with no evidence of only $(12.5, 5\sqrt{3})$ is A0		Either $x = 12.5$, $y = 5\sqrt{3}$ or $(12.5, 5\sqrt{3})$		5√3)	Correct and paired. Accept $(12.5, \sqrt{75})$	A1		
3. (c) Note Writing coordinates the wrong way round E.g. writing $x = 12.5$, $y = 5\sqrt{3}$ followed by $(5\sqrt{3}, 12.5)$ is final A0 Note Obtaining both $(12.5, 5\sqrt{3})$ and $(12.5, -5\sqrt{3})$ with no evidence of only $(12.5, 5\sqrt{3})$ is A0						(3)		
E.g. writing $x = 12.5$, $y = 5\sqrt{3}$ followed by $(5\sqrt{3}, 12.5)$ is final A0 Note Obtaining both $(12.5, 5\sqrt{3})$ and $(12.5, -5\sqrt{3})$ with no evidence of only $(12.5, 5\sqrt{3})$ is A0			Question 3 Notes					
Note Obtaining both $(12.5, 5\sqrt{3})$ and $(12.5, -5\sqrt{3})$ with no evidence of only $(12.5, 5\sqrt{3})$ is A0	3. (c)	Note						
		Note						

You can mark part (b) and part (c) together

Note

blank

DO NOT WRITE IN THIS AREA

4.

$$\mathbf{A} = \begin{pmatrix} 2p & 3q \\ 3p & 5q \end{pmatrix}$$

where p and q are non-zero real constants.

(a) Find A^{-1} in terms of p and q.

(3)

Given XA = B, where

$$\mathbf{B} = \begin{pmatrix} p & q \\ 6p & 11q \\ 5p & 8q \end{pmatrix}$$

(b) find the matrix \mathbf{X} , giving your answer in its simplest form.

(4)

Mathematics F1

Summer 2018 www.mystudybro.com
Past Paper (Mark Scheme) This resource was created and owned by Pearson Edexcel

WFM01

Question Number	Scheme		Notes	Marks	
4.	$\mathbf{A} = \begin{pmatrix} 2p & 3q \\ 3p & 5q \end{pmatrix}; \ \mathbf{XA} = \mathbf{B}; \ \mathbf{B} = \begin{pmatrix} p & q \\ 6p & 11q \\ 5p & 8q \end{pmatrix}$				
(a)	$\{\det(\mathbf{A}) = \} 2p(5q) - (3p)(3q) \{ = p \}$	q	2p(5q) - (3p)(3q) which can be un-simplified or simplified	B1	
	$\left\{ \mathbf{A}^{-1} = \right\} \frac{1}{pq} \begin{pmatrix} 5q & -3q \\ -3p & 2p \end{pmatrix} \text{ or } \begin{pmatrix} \frac{5}{p} \\ -\frac{3}{2} \end{pmatrix}$	$-\frac{3}{p}$	$\begin{pmatrix} 5q & -3q \\ -3p & 2p \end{pmatrix}$	M1	
	$\begin{pmatrix} & & & & & & & & & & & & & & & & & & &$	$\left(\frac{2}{q}\right)$	Correct \mathbf{A}^{-1}	A1	
		I			(3)
(b) Way 1	$ \begin{cases} \mathbf{X} = \mathbf{B}\mathbf{A}^{-1} = \\ p & q \\ 6p & 11q \\ 5p & 8q \end{cases} \frac{1}{pq} \begin{pmatrix} 5q & -3q \\ -3p & 2p \end{pmatrix} = \dots $ $ = \frac{1}{pq} \begin{pmatrix} 2pq & -pq \\ -3pq & 4pq \\ pq & pq \end{pmatrix} $ $ = \begin{pmatrix} 2 & -1 \\ -3 & 4 \\ 1 & 1 \end{pmatrix} $	(or at least	tempts BA ⁻¹ and finds at least one element to one element calculation) of their matrix X Note: Allow one slip in copying down B Note: Allow one slip in copying down A ⁻¹	M1	
	(2pq - pq)		At least 4 correct elements	A1	
	$= \frac{1}{pq} \begin{bmatrix} -3pq & 4pq \\ pq & pq \end{bmatrix}$		(need not be in a matrix) dependent on the first M mark Finds a 3×2 matrix of 6 elements	dM1	
	$= \begin{pmatrix} 2 & -1 \\ -3 & 4 \\ 1 & 1 \end{pmatrix}$	Correct simplified matrix for X		A1	(4)
(1-)					(4)
(b) Way 2	$ \{\mathbf{XA} = \mathbf{B} \Rightarrow\} \begin{pmatrix} a & b \\ c & d \\ e & f \end{pmatrix} \begin{pmatrix} 2p & 3q \\ 3p & 5q \end{pmatrix} = \begin{pmatrix} 6 \\ 5 \end{pmatrix} \\ 2pa + 3pb = p, 3qa + 5qb = q $	$\begin{bmatrix} p & q \\ 5p & 11q \\ 5p & 8q \end{bmatrix}$	Applies $\mathbf{X}\mathbf{A} = \mathbf{B}$ for a 3×2 matrix \mathbf{X} and attempts simultaneous equations in a and b or c and d or e and f to find at least one of a , b , c , d , e or f	M1	
	or $2pc+3pd = 6p$, $3qc+5qd = 11q$ or $2pe+3pf = 5p$, $3qe+5qf = 8q$ and finds at least one of a, b, c, d, e or	f	Note: Allow one slip in copying down A Note: Allow one slip in copying down B		
	2a+3b=1, $3a+5b=1$ $a=2, b=-1$		At least 4 correct elements	A1	
	$\begin{cases} 2c + 3d = 6, & 3c + 5d = 11 \\ 2e + 3f = 5, & 3e + 5f = 8 \end{cases} \Rightarrow c = -6$	-3, d = 4 $1, f = 1$	dependent on the first M mark Finds all 6 elements for the 3×2 matrix X	dM1	
	$\Rightarrow \mathbf{X} = \begin{pmatrix} 2 & -1 \\ -3 & 4 \\ 1 & 1 \end{pmatrix}$		Correct simplified matrix for X	A1	
					(4)
	1			1	7

Summer	2018
Julillie	2010

Mathematics F1

Past Paper (Mark Scheme)

www.mystudybro.com
This resource was created and owned by Pearson Edexcel

WFM01

Past Paper	(Mark Scheme) This resource was created and owned by Pearson Edexcei						
		Question 4 Notes					
4. (a)	Note	Condone $\frac{1}{10pq - 9pq} \begin{pmatrix} 5q & -3q \\ -3p & 2p \end{pmatrix} \text{ or } \frac{1}{2p(5q) - (3p)(3q)} \begin{pmatrix} 5q & -3q \\ -3p & 2p \end{pmatrix} \text{ for A1}$					
	Note	Condone $\begin{pmatrix} 5q & -3q \\ -3p & 2p \end{pmatrix} \frac{1}{pq}$ or $\begin{pmatrix} 5q & -3q \\ -3p & 2p \end{pmatrix} \frac{1}{2p(5q) - (3p)(3q)}$ for A1					
	Note	Condone $ \begin{pmatrix} \frac{5q}{pq} & -\frac{3q}{pq} \\ -\frac{3p}{pq} & \frac{2p}{pq} \end{pmatrix} $ for A1					
(b)	Note	Way 1: Allow SC 1 st A1 for at least 4 correct elements in					
		or for at least 4 of these elements seen in their calculations	•				

DO NOT WRITE IN THIS AREA

5. Given that

$$z^4 - 6z^3 + 34z^2 - 54z + 225 \equiv (z^2 + 9)(z^2 + az + b)$$

where a and b are real numbers,

(a) find the value of a and the value of b.

(2)

(b) Hence find the exact roots of the equation

$$z^4 - 6z^3 + 34z^2 - 54z + 225 = 0$$

(4)

(c) Show your roots on a single Argand diagram.

(2)

14

Past Paper	er (Mark Scheme) This resource was created and owned by Pearson Edexcel WFM0								
Question Number		Scheme	cheme Notes			Scheme Notes		Mar	ks
5.	$z^4 - 6z^3$	$34z^2 - 54z + 225 \equiv (z^2 + 9)(z^2 + az + b)$; a, b are real numbers							
()				At least one of $a = -6$ or $b = 25$	B1				
(a)	a) $a = -6, b = 25$			Both $a = -6$ and $b = 25$	B1				
						(2)			
(b)	$\int_{7^2} \perp Q -$	$0 \Longrightarrow \} z = 3i, -3i$		At least one of $3i$, $-3i$, $\sqrt{9}i$ or $-\sqrt{9}i$	M1				
	(2, 1) -	$0 \Rightarrow \int \mathcal{L} = SI, SI$		Both 3i and -3i	A1				
	• z	$ +25 = 0 \Rightarrow $ $z = \frac{6 \pm \sqrt{(-6)^2 - 4(1)(25)}}{2(1)} $ or $(z-3)^2 - 9 + 25 = 0 \Rightarrow z =$		Correct method of applying the quadratic formula or completing the square for solving their $z^2 + az + b = 0$; $a, b \ne 0$	M1				
	$\{z =\} 3 +$	+ 4i, 3 – 4i		3 + 4i and $3 - 4i$	A1				
						(4)			
(c)	(0,3) $(0,3)$ $(0,-3)$ $(3,4)$ $(3,4)$ $(3,-4)$			 Criteria ± 3i or ± (their k)i plotted correctly on the imaginary axis, where k∈ ℝ, k > 0 dependent on the final M mark being awarded in part (b) Their final two roots of the form λ± μi, λ, μ≠0, are plotted correctly Satisfies at least one of the criteria Satisfies both criteria with some indication of scale or coordinates stated with at least one pair of roots symmetrical about the real axis 	B1ft				
			Ou	lestion 5 Notes		8_			
5. (a)	Note	Give R1R0 for n	-	ect $(z^2 - 6z + 25)$, followed by $a = 25, b = -6$					
J. (a)	Note		a and b are not state						
	11016			,					
		 give B1B1 for writing down a correct (z²-6z+25), give B1B0 for writing down (z² + their "a"z + their "b"), with exactly one of their a or their b correct 							
(b)	Note	No working leading to $z = 3i$, $-3i$ is 1^{st} M1 1^{st} A1							
	Note	$z = \pm \sqrt{9i}$ unless recovered is 1 st M0 1 st A0							
	Note	You can assume $x = z$ for solutions in this question							
	Note	 Note Give 2nd M1 2nd A1 for z² -6z+25 = 0 ⇒ z = 3 + 4i, 3 - 4i with no intermediate working. Give 2nd M1 2nd A1 for z = 3 + 4i, 3 - 4i with no intermediate working having stated a = -6, b = 25 in part (a) or part (b). Otherwise, give 2nd M0 2nd A0 for z = 3 + 4i, 3 - 4i with no intermediate working. 							
]	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2								

Summer 2018

Mathematics F1

www.mystudybro.comThis resource was created and owned by Pearson Edexcel Past Paper (Mark Scheme)

i ast i apei	(IVIAIR SCITE	me) This resource was created and owned by I earson Edexcer	VVI IVI			
		Question 5 Notes Continued				
5. (b)	Note Special Case: If their 3-term quadratic factor $z^2 + "a"z + "b"$ can be factorised then give Special Case 2^{nd} M1 for correct factorisation leading to $z =$					
	Note	Otherwise, give 2 nd M0 for applying a method of factorisation to solve their 3TQ.				
	Note	Reminder: Method Mark for solving a 3TQ, " $az^2 + bz + c = 0$ "				
		Formula: Attempt to use the correct formula (with values for a , b and c)				
		Completing the square: $\left(z \pm \frac{b}{2}\right)^2 \pm q \pm c = 0, q \neq 0$, leading to $z =$				
5. (b)(c)	Note	You can mark part (b) and part (c) together				

Past Paper

This resource was created and owned by Pearson Edexcel

Leave blank

6.

$$f(x) = \frac{2(x^3 + 3)}{\sqrt{x}} - 9, \quad x > 0$$

The equation f(x) = 0 has two real roots α and β , where $0.4 < \alpha < 0.5$ and $1.2 < \beta < 1.3$

(a) Taking 0.45 as a first approximation to α , apply the Newton-Raphson procedure once to f(x) to find a second approximation to α , giving your answer to 3 decimal places.

(5)

(b) Use linear interpolation once on the interval [1.2, 1.3] to find an approximation to β , giving your answer to 3 decimal places.

(4)

DO NOT WRITE IN THIS AREA

Summe	ar 2	Λ1Ω
Summo	er z	บาช

Mathematics F1

•	r (Mark Scheme) This resource was created and owned by Pearson Edexcel W				
Question Number	Scheme	Notes			Marks
6.	Given $f(x) = \frac{2(x^3 + 3)}{\sqrt{x}} - 9$, $x > 0$;	Roots α , β : $0.4 < \alpha < \alpha$	< 0.5 and	$1.2 < \beta < 1.3$	
(a)	Given $f(x) = \frac{2(x^3 + 3)}{\sqrt{x}} - 9$, $x > 0$; Roots α , β : $0.4 < \alpha < 0.5$ and $1.2 < \beta < 1.3$ $\begin{cases} f(x) = 2x^{\frac{5}{2}} + 6x^{-\frac{1}{2}} - 9 \Rightarrow \\ 3 & 3 \end{cases}$ Some evidence of $\pm \lambda x^n \to \pm \mu x^{n-1}$; λ , $\mu \neq 0$ Differentiates to give $\pm Ax^{\frac{3}{2}} \pm Bx^{-\frac{3}{2}}$; A , $B \neq 0$				M1
	$\begin{bmatrix} 1(x) - 2x & 1 & 0x & 0 \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$	Differe	entiates to	give $\pm Ax^{\frac{3}{2}} \pm Bx^{-\frac{3}{2}}$; $A, B \neq 0$	M1
				be simplified or un-simplified	A1
	$\left\{\alpha \simeq 0.45 - \frac{f(0.45)}{f'(0.45)}\right\} \Rightarrow \alpha \simeq 0.45$	- 0.2159541693 -8.428734015		mpt at Newton-Raphson using alues of $f(0.45)$ and $f'(0.45)$	M1
	$\{\alpha = 0.4756211869\} \Rightarrow \alpha = 0.476$	6 (3 dp)	-	dent on all 4 previous marks 0.476 on their first iteration nore any subsequent iterations)	A1 cso
	Correct differentiation followed	by a correct answer of the body and the body and the body are the body			(
(a)	Alternative method 1 for the first	<u> </u>	S IIU IIIark	as iii part (a)	(5
Alt 1				of $\pm \lambda x^n \rightarrow \pm \mu x^{n-1}$; $\lambda, \mu \neq 0$	M1
	$\begin{cases} u = 2x^3 + 6 & v = \sqrt{x} \\ u' = 6x^2 & v' = \frac{1}{2}x^{-\frac{1}{2}} \end{cases} \Rightarrow$		Differentiates to give $\frac{\pm Ax^2(\sqrt{x}) \pm Bx^{-\frac{1}{2}}(2x^3 + 6)}{x}; A, B \neq 0$		M1
	$f'(x) = \frac{6x^2(\sqrt{x}) - \frac{1}{2}x^{-\frac{1}{2}}(2x^3 + 6)}{x}$ Correct differentiation which can be simplified or un-simplified			A1	
(b)	Either • $\frac{\beta - 1.2}{"0.3678924937"} = \frac{1.3 - 1.3}{"0.116141}$	- β 10527. "		At least one of either \pm (awrt 0.37, trunc. 0.36, awrt 0.12, or trunc. 0.11) This mark may be implied.	B1
	• $\frac{\beta - 1.2}{1.3 - \beta} = \frac{"0.3678924937"}{"0.1161410527"}$ • $\frac{\beta - 1.2}{"0.3678924937"} = \frac{1.3 - 1.2}{"0.1161410527" + "0.3678924937"}$ • $\beta = \left(\frac{(1.3)("0.3678924937") + (1.2)("0.1161410527" + "0.3678924937"}{"0.1161410527" + "0.3678924937"}\right) = \left(\frac{0.4782602418 + 0.1393692632}{0.4840335464}\right) = \left(\frac{0.61}{0.48}\right)$ • $\beta = 1.2 + \left(\frac{"0.3678924937"}{"0.1161410527" + "0.3678924937"}\right)$ • $\beta = 1.2 + \left(\frac{"-0.3678924937"}{"-0.1161410527" + "-0.3678924937"}\right)$		937"	A correct linear interpolation method. Do not allow this mark if a total of one or three negative lengths are used or if either fraction is the wrong way up. This mark may be implied.	M1
			7629505 1033546 0.1)		dM1
	$\{\beta = 1.276005578\} \Rightarrow \beta = 1.276$	(3 dp)	(Ior	1.276	A1 cao
	(Ignore any subsequent iteration				(4

Summer	2018
Oulling	

Correct differentiation which can be

simplified or un-simplified

A1

Mathematics F1 Past Paper (Mark Scheme) This resource was created and owned by Pearson Edexcel WFM01 Ouestion Marks Scheme Notes Number **6.** (b) At least one of either $\frac{x}{"0.3678924937..."} = \frac{0.1 - x}{"0.1161410527..."}$ Way 2 \pm (awrt 0.37, trunc. 0.36, **B**1 awrt 0.12, or trunc. 0.11) $x = \frac{(0.1)("0.3678924937...")}{0.4840335464...} = 0.0760055778...$ This mark may be implied. Finds x using a correct method of M1similar triangles and applies dM1 $\Rightarrow \beta = 1.2 + 0.0760055778...$ "1.5 + their x" $\{\beta = 1.276005578...\} \Rightarrow \beta = 1.276 \text{ (3 dp)}$ 1.276 A1 cao **(4)** (b) $\frac{0.1 - x}{"0.3678924937..."} = \frac{x}{"0.1161410527..."}$ At least one of either Wav 3 \pm (awrt 0.37, trunc. 0.36, **B**1 awrt 0.12, or trunc. 0.11) $x = \frac{(0.1)("0.1161410527...")}{0.4840335464...} = 0.0239944222...$ This mark may be implied. Finds x using a correct method of similar triangles and applies M1 dM1 "1.6 – their x" $\Rightarrow \beta = 1.3 - 0.0239944222...$ $\{\beta = 1.276005578...\} \Rightarrow \beta = 1.276 \text{ (3 dp)}$ 1.276 A1 cao **(4) Question 6 Notes** Incorrect differentiation followed by their estimate of α with no evidence of applying the **6.** (a) Note NR formula is final dM0A0. This mark can be implied by applying at least one correct *value* of either f(0.45) or f'(0.45)**M1** to 1 significant figure in $0.45 - \frac{f(0.45)}{f'(0.45)}$. So just $0.45 - \frac{f(0.45)}{f'(0.45)}$ with an incorrect answer and no other evidence scores final dM0A0. You can imply the M1A1A1 marks for algebraic differentiation for either Note • $f'(0.45) = 5(0.45)^{\frac{3}{2}} - 3(0.45)^{-\frac{3}{2}}$ • f'(1.5) applied correctly in $\alpha \approx 0.45 - \frac{\frac{2((0.45)^3 + 3)}{\sqrt{0.45}} - 9}{5(0.45)^{\frac{3}{2}} - 3(0.45)^{-\frac{3}{2}}}$ Alternative method 2 for the first 3 marks (a) Some evidence of $\pm \lambda x^n \rightarrow \pm \mu x^{n-1}$; $\lambda, \mu \neq 0$ Alt 2 Note: Allow M1 for either $\begin{cases} u = 2x^{3} + 6 & v = x^{-\frac{1}{2}} \\ u' = 6x^{2} & v' = -\frac{1}{2}x^{-\frac{3}{2}} \end{cases} \Rightarrow$ M1 $\pm Ax^2(x^{-\frac{1}{2}})$ or $\pm Bx^{-\frac{3}{2}}(2x^3+6)$ or $\pm Bx^{-\frac{3}{2}}(x^3+3)$; $A, B \neq 0$ Differentiates to give M1 $\pm Ax^2(x^{-\frac{1}{2}}) \pm Bx^{-\frac{3}{2}}(2x^3+6); A, B \neq 0$

 $\mathbf{f}'(x) = 6x^2(x^{-\frac{1}{2}}) - \frac{1}{2}x^{-\frac{3}{2}}(2x^3 + 6)$

Summer 2018

Mathematics F1

www.mystudybro.com
This resource was created and owned by Pearson Edexcel

Past Paper	(Mark Scher	me) I his resource was created and owned by Pearson Edexcel WFM01					
	Question 6 Notes Continued						
6. (b)							
	Note	$\left \frac{\beta - 1.2}{1.3 - \beta} \right = \left \frac{\text{"- 0.3678924937"}}{\text{"0.1161410527"}} \right \text{ is a valid method for the first M mark}$					
	Note	Give 1 st M1 for either $\frac{-f(1.2)}{f(1.3)} = \frac{\beta - 1.2}{1.3 - \beta}$ or $\frac{ f(1.2) }{f(1.3)} = \frac{\beta - 1.2}{1.3 - \beta}$ or $\frac{ f(1.2) }{ f(1.3) } = \frac{\beta - 1.2}{1.3 - \beta}$					
	Note	Give M1M1 for the correct statement $\frac{1.3 f(1.2) + 1.2f(1.3)}{f(1.3) + f(1.2) }$ Give M1M1 for the correct statement $\beta = \frac{1.3 + 1.2k}{k+1}$,					
	Note						
		where $k = \frac{f(1.3)}{ f(1.2) } = \frac{0.116141}{0.367892} = 0.31569$					
	Note	$\frac{\beta - 1.2}{1.3 - \beta} = \frac{"0.3678924937"}{"0.1161410527"} \implies \beta = 1.276 \text{ with no intermediate working is B1 M1 dM}$					
	Note	$\frac{\beta - 1.2}{-0.3678924937} = \frac{1.3 - \beta}{0.1161410527} \implies \beta = 1.34613 = 1.346 (3 dp) \text{ is B1 M0 dM0 A0}$					
	Note	$\frac{\beta - 1.2}{-0.3678924937} = \frac{1.3 - \beta}{-0.1161410527} \implies \beta = 1.276 \text{ (3 dp) is B1 M1 dM1 A1}$					

WFM01 Leave

blank

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

It is given that α and β are roots of the equation $5x^2 - 4x + 3 = 0$

Without solving the quadratic equation,

(a) find the exact value of $\frac{1}{\alpha^2} + \frac{1}{\beta^2}$

(5)

(b) find a quadratic equation which has roots $\frac{3}{\alpha^2}$ and $\frac{3}{\beta^2}$

giving your answer in the form $ax^2 + bx + c = 0$, where a, b and c are integers to be found.

(4)

22

Sum	nmer	201	8
Juli		4 0 i	u

Mathematics F1
WFM01

www.mystudybro.com
This resource was created and owned by Pearson Edexcel

Past Paper	(Mark Schem	me) This resource was created and owned by Pearson Edexcel WFM01					
Question Number		Scheme			Notes	Marks	
7.		$5x^2 - 4x$	$5x^2 - 4x + 3 = 0$ has roots α , β				
(a)	$\alpha + \beta = \frac{4}{5}$	α , $\alpha\beta = \frac{3}{5}$		Both $\alpha + \beta = \frac{4}{5}$ and $\alpha\beta = \frac{3}{5}$, seen or implied			
	$\frac{1}{\alpha^2} + \frac{1}{\beta^2}$	$=\frac{\alpha^2+\beta^2}{\alpha^2\beta^2}$			States or uses $\frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{\alpha^2 + \beta^2}{\alpha^2 \beta^2}$	M1	
	$\alpha^2 + \beta^2 =$	$= (\alpha + \beta)^2 - 2\alpha\beta = \dots$		U	se of the correct identity for $\alpha^2 + \beta^2$ (May be implied by their work)	M1	
	$\frac{1}{\alpha^2} + \frac{1}{\beta^2}$	$=\frac{\alpha^2+\beta^2}{\alpha^2\beta^2}=\frac{\left(\frac{4}{5}\right)^2-2\left(\frac{3}{5}\right)}{\left(\frac{3}{5}\right)^2}$		applies $\alpha^2 \beta^2$	M1		
		$=\frac{-\left(\frac{14}{25}\right)}{\left(\frac{9}{25}\right)}=-\frac{14}{9}$	dep	dependent on ALL previous marks being awarded $-\frac{14}{9}$ or $-1\frac{5}{9}$ or -1.5 from correct working			
				,		(5)	
(b) Way 1	{Sum =}	$\frac{3}{\alpha^2} + \frac{3}{\beta^2} = 3\left(-\frac{14}{9}\right) \left\{ = -\frac{1}{3}\right\}$	$-\frac{14}{3} \text{ or } -\frac{42}{9} $ Simplifies $\frac{3}{\alpha^2} + \frac{3}{\beta^2} \text{ to give}$ M1 3(their answer to (a))			M1	
	{Product	$= \left\{ \frac{3}{\alpha^2} \right\} \left(\frac{3}{\beta^2} \right) = \frac{9}{\left(\frac{3}{5} \right)^2} = 25 \right\}$ Applies $\frac{9}{(\text{their } \alpha \beta)^2}$ using their value of $\alpha \beta$					
	$x^2 + \frac{14}{3}x$	Note: "=0" is not required for this mark					
	$3x^2 + 14x$	x + 75 = 0	Any integer multiple of $3x^2 + 14x + 75 = 0$, including the "=0"				
		Question 7 Notes					
7. (a)	Note	Writing a correct $\alpha^2 + \beta^2 =$			without attempting to substitute at leas	t one	
		of either their $\alpha + \beta$ or their					
	Note	Give B0M1M1M1A0 for $\alpha + \beta = -\frac{4}{5}$, $\alpha\beta = \frac{3}{5}$ leading to $\frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{\left(-\frac{4}{5}\right)^2 - 2\left(\frac{3}{5}\right)}{\left(\frac{3}{5}\right)^2} = -\frac{14}{9}$					
	Note	Writing down α , $\beta = \frac{2 + \sqrt{11}i}{5}$, $\frac{2 - \sqrt{11}i}{5}$ and then stating $\alpha + \beta = \frac{4}{5}$, $\alpha\beta = \frac{3}{5}$ or applying					
		$\alpha + \beta = \frac{2 + \sqrt{11}i}{5} + \frac{2 - \sqrt{11}i}{5} = \frac{4}{5} \text{ and } \alpha\beta = \left(\frac{2 + \sqrt{11}i}{5}\right)\left(\frac{2 - \sqrt{11}i}{5}\right) = \frac{3}{5} \text{ scores B0}$					
	Note	Those candidates who then a	apply	$\alpha + \beta = \frac{4}{5}$	$\alpha\beta = \frac{3}{5}$, having written down/applied		
		$\alpha, \beta = \frac{2 + \sqrt{11}i}{5}, \frac{2 - \sqrt{11}i}{5},$		3	3		
	Note	Give B0M0M0M0A0 for $\frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{1}{\left(\frac{2+\sqrt{11}i}{5}\right)^2} + \frac{1}{\left(\frac{2-\sqrt{11}i}{5}\right)^2} = -\frac{14}{9}$					

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

WFM01

	Question 7 Notes Continued					
7. (a)	Note Give B0M1M0M0A0 for $\frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{\alpha^2 + \beta^2}{\alpha^2 \beta^2} = \frac{\left(\frac{2+\sqrt{11}i}{5}\right)^2 + \left(\frac{2-\sqrt{11}i}{5}\right)^2}{\left(\frac{2+\sqrt{11}i}{5}\right)^2 \left(\frac{2-\sqrt{11}i}{5}\right)^2} = -\frac{14}{9}$					
	Note	Give B0M1M0M0A0 for				
		$\frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{(\alpha + \beta)^2 - 2\alpha\beta}{\alpha^2 \beta^2} = \frac{\left(\frac{2+\sqrt{\Pi i}}{5} + \frac{2-\sqrt{\Pi i}}{5}\right)^2 - 2\left(\frac{2+\sqrt{\Pi i}}{5}\right)\left(\frac{2-\sqrt{\Pi i}}{5}\right)}{\left(\frac{2+\sqrt{\Pi i}}{5}\right)^2 \left(\frac{2-\sqrt{\Pi i}}{5}\right)^2} = -\frac{14}{9}$				
	Note	Allow B1 for both $S = \frac{4}{5}$ and $P = \frac{3}{5}$ or for $\sum = \frac{4}{5}$ and $\prod = \frac{3}{5}$				
	Note	Give final A0 for e.g. -1.55 or -1.5556 without reference to $-\frac{14}{9}$ or $-1\frac{5}{9}$ or -1.5				
	Note	Give 2 nd M1 for applying their $\alpha + \beta = \frac{4}{5}$ on				
		$5\alpha^{2} - 4\alpha + 3 = 0, 5\beta^{2} - 4\beta + 3 = 0 \Rightarrow 5(\alpha^{2} + \beta^{2}) - 4(\alpha + \beta) + 6 = 0$				
		to give $5(\alpha^2 + \beta^2) - 4\left(\frac{4}{5}\right) + 6 = 0$ $\left\{ \Rightarrow \alpha^2 + \beta^2 = \frac{-6 + \frac{16}{5}}{5} = -\frac{14}{25} \right\}$				
(b)	Note	A correct method leading to $a = 3$, $b = 14$, $c = 75$ without writing a final answer of				
		$3x^2 + 14x + 75 = 0$ is final M1A0				
	Note	Using $\frac{2+\sqrt{11}i}{5}$, $\frac{2-\sqrt{11}i}{5}$ explicitly, to find the sum and product of $\frac{3}{\alpha^2}$ and $\frac{3}{\beta^2}$ to give				
		$x^{2} + \frac{14}{3}x + 25 = 0 \implies 3x^{2} + 14x + 75 = 0$ scores M0M0M1A0 in part (b)				
	Note	Using $\frac{2+\sqrt{11}i}{5}$, $\frac{2-\sqrt{11}i}{5}$ to find $\alpha+\beta=\frac{4}{5}$, $\alpha\beta=\frac{3}{5}$, $\frac{1}{\alpha^2}+\frac{1}{\beta^2}=-\frac{14}{9}$ and applying				
		$\left\{\alpha + \beta = \frac{4}{5}, \right\} \alpha\beta = \frac{3}{5}, \frac{1}{\alpha^2} + \frac{1}{\beta^2} = -\frac{14}{9} \text{ can potentially score full marks in part (b). E.g.}$				
		• Sum = $\frac{3}{\alpha^2} + \frac{3}{\beta^2} = 3\left(-\frac{14}{9}\right) = -\frac{14}{3}$				
		• Product $=$ $\left(\frac{3}{\alpha^2}\right)\left(\frac{3}{\beta^2}\right) = \frac{9}{\left(\frac{3}{5}\right)^2} = 25$				
		• $x^2 + \frac{14}{3}x + 25 = 0 \Rightarrow 3x^2 + 14x + 75 = 0$				
	Note	Finding $\frac{1}{\alpha^2} + \frac{1}{\beta^2} = -\frac{14}{9}$ and correctly writing $x^2 - 3\left(\frac{1}{\alpha^2} + \frac{1}{\beta^2}\right)x + \frac{9}{(\alpha\beta)^2} = 0$ followed by				
		$x^{2} - \frac{14}{3}x + 25 = 0 \implies 3x^{2} - 14x + 75 = 0 \text{ (incorrect substitution of } \frac{1}{\alpha^{2}} + \frac{1}{\beta^{2}} = -\frac{14}{9}\text{)}$				
		is M0M1M1A0				

Summer 2018

Mathematics F1

(4)

Past Paper (Mark Scheme) This resource was created and owned by Pearson Edexcel WFM01 Question Scheme Notes Marks Number 7. $5x^2 - 4x + 3 = 0$ has roots α , β Substitutes $x^2 = \frac{3}{y}$ into $5x^2 - 4x + 3 = 0$ (b) M1 Way 2 dependent on the previous M mark Correct method for squaring dM1 both sides of their equation dependent on the previous M mark Obtains an expression of the form dM1 $ay^2 + by + c$, $a, b, c \neq 0$ $9y^2 + 42y + 225 = 0$ **Note:** " = 0" not required for this mark Any integer multiple of $3y^2 + 14y + 75 = 0$, **A**1 or $3x^2 + 14x + 75 = 0$, including the "=0"

blank

DO NOT WRITE IN THIS AREA

8. Prove by induction that, for $n \in \mathbb{Z}^+$

$$\begin{pmatrix} a & 0 \\ 1 & b \end{pmatrix}^n = \begin{pmatrix} a^n & 0 \\ \frac{a^n - b^n}{a - b} & b^n \end{pmatrix}$$

where a and b are constants and $a \neq b$.

- (•	١
•		,

Mathematics F1

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

WFM01

Question Number		Scheme		No	otes	Marks	
8.		$\begin{pmatrix} a & 0 \\ 1 & b \end{pmatrix}^n = \begin{pmatrix} a^n \\ \frac{a^n - b}{a - b} \end{pmatrix}$	$\left(\begin{array}{cc} 0 \\ b^n \end{array}\right);$	$n \in \mathbb{Z}^+; \ a \neq b$			
	RH	$HS = \begin{pmatrix} a & 0 \\ 1 & b \end{pmatrix},$ $HS = \begin{pmatrix} a & 0 \\ \frac{a-b}{a-b} & b \end{pmatrix} = \begin{pmatrix} a & 0 \\ 1 & b \end{pmatrix}$	or LHS	either $S = \begin{pmatrix} a & 0 \\ 1 & b \end{pmatrix} \text{ or } \begin{pmatrix} a & 0 \\ 1 & b \end{pmatrix}$	Shows or states that r LHS = RHS = $\begin{pmatrix} a & 0 \\ 1 & b \end{pmatrix}$ $\begin{pmatrix} a & 0 \\ 1 & b \end{pmatrix}^{1}$, RHS = $\begin{pmatrix} a & 0 \\ 1 & b \end{pmatrix}$	B1	
		the result is true for $n = k$) $a^{k} = \begin{pmatrix} a^{k} & 0 \\ \frac{a^{k} - b^{k}}{a - b} & b^{k} \end{pmatrix} \begin{pmatrix} a & 0 \\ 1 & b \end{pmatrix} $ or $\begin{pmatrix} a & 0 \\ 1 & b \end{pmatrix}$	$\binom{0}{b} \binom{a^k}{a^k - b}$	$\begin{bmatrix} 0 \\ \frac{a^k}{a} \\ a \end{bmatrix}$ $\begin{bmatrix} a^k \\ a \\ a \\ 1 \end{bmatrix}$	$ \begin{bmatrix} a^k & 0 \\ -b^k \\ -b \end{bmatrix} $ multiplied by $ \begin{bmatrix} 0 \\ b \end{bmatrix} $ (either way round)	M1	
	$= \begin{pmatrix} a^{k+1} & 0 \\ \frac{a(a^k - b^k)}{a - b} + b^k & b^{k+1} \end{pmatrix} \text{ or } \begin{pmatrix} a^{k+1} & 0 \\ a^k + \frac{b(a^k - b^k)}{a - b} & b^{k+1} \end{pmatrix}$ $= \begin{pmatrix} a^{k+1} & 0 \\ \frac{a(a^k - b^k)}{a - b} + \frac{b^k(a - b)}{(a - b)} & b^{k+1} \end{pmatrix}$ $= \begin{pmatrix} a^{k+1} & 0 \\ \frac{a^{k+1} - b^{k+1}}{a - b} & b^{k+1} \end{pmatrix}$ $= \begin{pmatrix} a^{k+1} & 0 \\ \frac{a^{k+1} - b^{k+1}}{a - b} & b^{k+1} \end{pmatrix}$ $= \begin{pmatrix} a^{k+1} & 0 \\ \frac{a^{k+1} - b^{k+1}}{a - b} & b^{k+1} \end{pmatrix}$ $= \begin{pmatrix} a^{k+1} & 0 \\ \frac{a^{k+1} - b^{k+1}}{a - b} & b^{k+1} \end{pmatrix}$ $= \begin{pmatrix} a^{k+1} & 0 \\ \frac{a^{k+1} - b^{k+1}}{a - b} & b^{k+1} \end{pmatrix}$ $= \begin{pmatrix} a^{k+1} & 0 \\ \frac{a^{k+1} - b^{k+1}}{a - b} & b^{k+1} \end{pmatrix}$ $= \begin{pmatrix} a^{k+1} & 0 \\ \frac{a^{k+1} - b^{k+1}}{a - b} & b^{k+1} \end{pmatrix}$ $= \begin{pmatrix} a^{k+1} & 0 \\ \frac{a^{k+1} - b^{k+1}}{a - b} & b^{k+1} \end{pmatrix}$ $= \begin{pmatrix} a^{k+1} & 0 \\ \frac{a^{k+1} - b^{k+1}}{a - b} & b^{k+1} \end{pmatrix}$ $= \begin{pmatrix} a^{k+1} & 0 \\ \frac{a^{k+1} - b^{k+1}}{a - b} & b^{k+1} \end{pmatrix}$ $= \begin{pmatrix} a^{k+1} & 0 \\ \frac{a^{k+1} - b^{k+1}}{a - b} & b^{k+1} \end{pmatrix}$ $= \begin{pmatrix} a^{k+1} & 0 \\ \frac{a^{k+1} - b^{k+1}}{a - b} & b^{k+1} \end{pmatrix}$						
	If the re	result is <u>true for $n = k$</u> , then it is <u>true for $n = k + 1$</u> . As the result has been shown to be true for $n = 1$, then the result <u>is true for all n</u> $(\in \mathbb{Z}^+)$					
			Question	8 Notes		5	
8.	Note	Final A1 is dependent on all previous It is gained by candidates conveying either at the end of their solution of	ous mark	s being scored. as of all four un	_		
	Note	Note Give B0 for stating LHS = RHS by itself with no reference to LHS = RHS = $\begin{pmatrix} a & 0 \\ 1 & b \end{pmatrix}$ Note Give B0 for just stating $\begin{pmatrix} a & 0 \\ 1 & b \end{pmatrix}^1 = \begin{pmatrix} a & 0 \\ 1 & b \end{pmatrix}$					
	Note						
	Note	E.g. $ \begin{pmatrix} a^k & 0 \\ \frac{a^k - b^k}{a - b} & b^k \end{pmatrix} \begin{pmatrix} a & 0 \\ 1 & b \end{pmatrix} = \begin{pmatrix} a^k \\ a^k \end{pmatrix} $	a^{k+1} $a^{k+1} - b^{k+1}$ $a - b$	$\begin{pmatrix} 0 \\ b^{k+1} \end{pmatrix}$ with no	intermediate working is M	I1A0A0A0	
	Note	E.g. $ \begin{pmatrix} a^k & 0 \\ \frac{a^k - b^k}{a - b} & b^k \end{pmatrix} \begin{pmatrix} a & 0 \\ 1 & b \end{pmatrix} = \begin{pmatrix} \frac{a^k}{a^k} \\ \frac{a^k - b^k}{a - b} & b^k \end{pmatrix} \begin{pmatrix} a & 0 \\ 1 & b \end{pmatrix} = \begin{pmatrix} a^k & 0 \\ 1 & b \end{pmatrix} = $	$\frac{a^{k+}}{a(a^k-b^k)}$	$\frac{1}{a} + b^k \qquad b^{k+1}$	$= \begin{pmatrix} a^{k+1} & 0 \\ \frac{a^{k+1} - b^{k+1}}{a - b} & b^{k+1} \end{pmatrix} $ is	M1A1A1	

blank

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Given that

$$\frac{z - ki}{z + 3i} = i$$
, where k is a positive real constant

(a) show that
$$z = -\frac{(k+3)}{2} + \frac{(k-3)}{2}i$$
 (4)

- (b) Using the printed answer in part (a),
 - (i) find an exact simplified value for the modulus of z when k = 4
 - (ii) find the argument of z when k = 1. Give your answer in radians to 3 decimal places, where $-\pi < \arg z < \pi$ **(4)**

Summer	2018
Julilie	2010

Mathematics F1

Past Paper (Mark Scheme) This resource was created and owned by Pearson Edexcel WFM01 **Ouestion** Marks Scheme Notes Number (a) $\frac{z - ki}{z + 3i} = i$ (b)(i) k = 4 (ii) k = 19. $z - ki = i(z + 3i) \Rightarrow z - ki = iz - 3$ (a) Complete method of making z the subject M1Way 1 $\Rightarrow z - iz = -3 + ki \Rightarrow z(1 - i) = -3 + ki$ $\Rightarrow z = \frac{-3 + ki}{(1 - i)}$ Correct expression for z = ...**A**1 dependent on the previous M mark $z = \frac{(-3+ki)}{(1-i)} \frac{(1+i)}{(1+i)} \left\{ = \frac{(-3+ki)(1+i)}{2} \right\}$ Multiplies numerator and denominator dM1 by the conjugate of the denominator $z = -\frac{(k+3)}{2} + \frac{(k-3)}{2}i$ * Achieves the correct answer A1* cso with no errors seen **(4)** z - ki = i(z + 3i)(a) Multiplies both sides by (z + 3i), Way 2 (x + yi) - ki = i(x + yi + 3i)applies z = x + yi, o.e., multiplies out and M1x + (y - k)i = -y - 3 + xiattempts to equate both the real part and the imaginary part of the resulting equation $\{\text{Real} \Rightarrow \}$ x = -y - 3Both correct equations A₁ $\{\text{Imaginary} \Rightarrow \} \quad y - k = x$ which can be simplified or un-simplified dependent on the previous M mark $\begin{cases} x + y = -3 \\ x - y = -k \end{cases} \Rightarrow x = \frac{-k-3}{2}, y = \frac{k-3}{2}$ Obtains two equations both in terms of x and y dM1 and solves them simultaneously to give at least one of $x = \dots$ or $y = \dots$ Finds $x = \frac{-k-3}{2}, y = \frac{k-3}{2}$ $\Rightarrow z = -\frac{(k+3)}{2} + \frac{(k-3)}{2}i$ * A1* cso and writes down the given result **(4)** (b)(i) Some evidence of substituting z = 4 $\{k=4 \Rightarrow\}$ $z=-\frac{(4+3)}{2}+\frac{(4-3)}{2}i$ $\{=-\frac{7}{2}+\frac{1}{2}i\}$ into the given expression for zM1and a full attempt at applying Pythagoras to find |z|Correct exact answer A₁ (ii) Some evidence of substituting z = 1 into the given expression for z and uses trigonometry $\{k=1 \Rightarrow\}$ $z=-\frac{(1+3)}{2}+\frac{(1-3)}{2}i \{=-2-i\}$ to find an expression for $\arg z$ in the range M1(-3.14..., -1.57...) or $(-180^{\circ}, -90^{\circ})$ $\arg z = -\pi + \tan^{-1}\left(\frac{1}{2}\right)$ or (3.14..., 4.71...) or (180°, 270°) $\{\arg z = -\pi + 0.463647... \Rightarrow \}$ $\arg z = -2.677945... \{ = -2.678 (3 dp) \}$ awrt - 2.678**A**1 (4)

Summer	2018
- 4	

(b)(ii)

Note

www.mystudybro.com

Mathematics F1

This resource was created and owned by Pearson Edexcel Past Paper (Mark Scheme) WFM01 Ouestion Marks Scheme Notes Number (a) $\frac{z - ki}{z + 3i} = i$ (b)(i) k = 4 (ii) k = 19. $\frac{z - ki}{i} = z + 3i \implies \frac{iz + k}{(-1)} = z + 3i$ (a) Complete method of making z the subject M1Way 3 \Rightarrow $-iz - k = z + 3i \Rightarrow -k - 3i = z + iz$ $\Rightarrow -k-3i = z(1+i)$ Correct expression for z = ...**A**1 $\Rightarrow z = \frac{-k - 3i}{(1+i)}$ dependent on the previous M mark $z = \frac{(-k-3i)}{(1+i)} \frac{(1-i)}{(1-i)}$ Multiplies numerator and denominator dM1 by the conjugate of the denominator $z = -\frac{(k+3)}{2} + \frac{(k-3)}{2}i *$ Achieves the correct answer A1* cso with no errors seen **(4) Question 9 Notes** Condone any of e.g. $z = -\frac{k+3}{2} + \frac{k-3}{2}i$ or $z = -\frac{(3+k)}{2} + \frac{(-3+k)}{2}i$ for the final A mark **9.** (a) Note M1 can be implied by awrt 3.54 or truncated 3.53 (b)(i) Note Give A0 for 3.5355... without reference to $\sqrt{\frac{50}{4}}$, $\sqrt{12.5}$, $\frac{\sqrt{50}}{2}$, $\frac{5}{2}\sqrt{2}$ or $\frac{5}{\sqrt{2}}$ or $\sqrt{\frac{25}{2}}$ Note

Allow M1 (implied) for awrt -2.7, truncated -2.6, awrt -153° or awrt 207° or awrt 3.6

DO NOT WRITE IN THIS AREA

Leave blank

- 10. The rectangular hyperbola H has equation xy = 144. The point P, on H, has coordinates $\left(12p, \frac{12}{p}\right)$, where p is a non-zero constant.
 - (a) Show, by using calculus, that the normal to H at the point P has equation

$$y = p^2 x + \frac{12}{p} - 12p^3$$

(5)

Given that the normal through P crosses the positive x-axis at the point Q and the negative y-axis at the point R,

- (b) find the coordinates of Q and the coordinates of R, giving your answers in terms of p. **(3)**
- (c) Given also that the area of triangle OQR is 512, find the possible values of p. **(5)**

Summer	2018
Jullillei	2010

Mathematics F1

Past Paper (Mark Scheme)

This resource was created and owned by Pearson Edexcel

WFM01 **Ouestion** Scheme **Notes** Marks Number $H: xy = 144; \ P\left(12p, \frac{12}{p}\right), \ p \neq 0, \text{ lies on } H.$ 10. Normal to H at P crosses positive x-axis at Q and negative y-axis at R $y = \frac{144}{x} = 144x^{-1} \implies \frac{dy}{dx} = -144x^{-2} \text{ or } -\frac{144}{x^2}$ (a) Uses product rule to give $\pm x \frac{dy}{dx} \pm y$ $xy = 144 \implies x \frac{dy}{dx} + y = 0$ M1their $\frac{dy}{dt} \times \frac{1}{\text{their } \frac{dy}{dt}}$; Condone $t \equiv p$ x = 12t, $y = \frac{12}{t}$ $\Rightarrow \frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx} = -\left(\frac{12}{t^2}\right)\left(\frac{1}{12}\right)$ So at *P*, $m_T = -\frac{1}{n^2}$ Correct calculus work leading to $m_T = -\frac{1}{r^2}$ A₁ Applies $m_N = \frac{-1}{m_T}$, where m_T is found using calculus So, $m_N = p^2$ M1 • $y - \frac{12}{p} = "p^2"(x - 12p)$ or Correct straight line method for an equation of a normal where $m_N (\neq m_T)$ is M1 • $\frac{12}{n} = "p^2"(12p) + c \implies y = "p^2"x + \text{their } c$ found by using calculus. Correct algebra leading to $y = p^2 x + \frac{12}{r^2} - 12p^3 *$ Correct solution only A1 * **Note:** m_N must be a function of p for the 2^{nd} M1 and 3^{rd} M1 mark **(5)** (b) $y=0 \Rightarrow x_Q=12p-\frac{12}{p^3}$ Puts y = 0 and finds xM1 or puts x = 0 and finds y $x = 0 \Rightarrow y_R = \frac{12}{p} - 12p^3$ At least one of x_Q or y_R correct, o.e. A1 $(12p - \frac{12}{n^3}, 0)$ and $(0, \frac{12}{n} - 12p^3)$ Both sets of coordinates correct. A₁ {Ignore labelling of coordinates} **(3)** $\frac{1}{2} \times (\pm \text{ their } x_Q)(\pm \text{ their } y_R) = 512$ M1 Area $OQR = \frac{1}{2} \left(12p - \frac{12}{p^3} \right) \left(\frac{12}{p} - 12p^3 \right) = 512$ (c) Correct equation which can A1be un-simplified or simplified $144p^4 - 1312 + \frac{144}{p^4} = 0$ $144 p^8 - 1312 p^4 + 144 = 0$ Correct 3 term quadratic in p^4 A₁ $\left\{ \Rightarrow 9p^8 - 82p^4 + 9 = 0 \right\}$ **Note:** $144 p^8 + 144 = 1312 p^4$ is acceptable for this mark dependent on the previous M mark $(9p^4-1)(p^4-9)=0 \implies p^4=...$ Uses a 3TQ in p^4 (or an implied 3TQ in p^4) dM1 to find at least one value of $p^4 = ...$ Obtains both $p = \sqrt{3}$ and $p = -\frac{1}{\sqrt{3}}$ only $p = \sqrt{3} \text{ and } p = -\frac{1}{\sqrt{3}}$ A₁ **Note:** Allow $p = -\frac{\sqrt{3}}{3}$ in place of $p = -\frac{1}{\sqrt{3}}$ **(5)**

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

	(Mark Scher	me) This resource was created and owned by Pearson Edexcel			WFM01	
Question Number	Scheme			Notes		
10. (c)	Area $OQR = \frac{1}{2} \left(12p - \frac{12}{p^3} \right) \left(\frac{12}{p} - 12p^3 \right) = 512$		= 512	$\frac{1}{2} \times \left(\pm \text{ their } x_Q\right) \left(\pm \text{ their } y_R\right) = 512$ Correct equation which can	M1 A1	
		2 (P) (P)		be un-simplified or simplified		
	144 (p-	$\frac{1}{p^3} \left(p^3 - \frac{1}{p} \right) = 1024 \implies p^4 - 2$	$+\frac{1}{p^4} = \frac{1024}{144}$			
	$\left(p^2 - \frac{1}{p^2}\right)$	$\int_{0}^{2} = \frac{64}{9} \implies p^{2} - \frac{1}{p^{2}} = \pm \frac{8}{3}$				
		Both correct 3 term quadratics				
	$3p^4 - 8p^2$	$p^2 - 3 = 0$ and $3p^4 + 8p^2 - 3 = 0$		Both $p^4 - 1 = \frac{8}{3}p^2$ and $3p^4 + 8p^2 = 3$	A1	
			is acceptable for this mark			
	` • •	Hose a 2TO in -2 (or an implied 2TO is		dependent on the previous M mark 3TO in p^2 (or an implied 3TO in p^2)	dM1	
	$(3p^2-1)$			to find at least one value of $p^2 =$	divii	
	or $(3p^2 - 1)(p^2 + 3) = 0 \implies p^2 =$ $p = \sqrt{3} \text{ and } p = -\frac{1}{\sqrt{3}}$		0	Obtains both $p = \sqrt{3}$ and $p = -\frac{1}{\sqrt{3}}$ only		
		V		V	(5)	
	Question 10 Notes					
10. (a)	Note	Allow $y = p^2 x - 12p^3 + \frac{12}{p}$ {order of terms interchanged in $y =$ } for final A1				
(b)	Note	• $x = 12p - \frac{12}{p^3}$ or $x = \frac{12p^4 - 12}{p^3}$ or $x = \frac{12(p^2 - 1)(p^2 + 1)}{p^3}$				
		• $y = \frac{12}{p} - 12p^3$ or $y = \frac{12 - 12p^4}{p}$				
(c)	Note	Give 1 st M1, 1 st A1 for	s I			
		$\bullet \frac{1}{2} \left(12p - \frac{12}{p^3} \right) \left(\frac{12}{p} - 12p^3 \right) = 512 \{\text{correct use of modulus}\}$				
		• $\frac{1}{2} \left(12p - \frac{12}{p^3} \right) \left(12p^3 - \frac{12}{p} \right) = 512$ {modulus has been applied here}				
		• $-\frac{1}{2}\left(12p - \frac{12}{p^3}\right)\left(\frac{12}{p} - 12p^3\right) = 512$ {modulus has been applied here}				
	Note	Give 1st M1, 1st A0 for $\frac{1}{2} \left(12p - \frac{12}{p^3} \right) \left(\frac{12}{p} - 12p^3 \right) = 512$ {modulus has not been applied on y_R }				
	Note Writing a correct $144p^4 - 1312 + \frac{144}{p^4} = 0$ o.e. followed by a correct e.g. $p^4 = 9$ with no					
		intermediate working is 2 nd A0, 2 nd M1				
	Note	Writing a correct $144p^4 - 1312 + \frac{144}{p^4} = 0$ o.e. followed by $p^4 = 9$ and $p^4 = \frac{1}{9}$ with no				
	intermediate working is 2 nd A1 (implied), 2 nd M1					