Mathematics FP2

Examiner's use only

Team Leader's use only

Question

1

2

3

4

Leave

Past Paper

This resource was created and owned by Pearson Edexcel

6668

Centre No.					Pape	er Refer	ence			Surname	Initial(s)
Candidate No.			6	6	6	8	/	0	1	Signature	

Paper Reference(s)

6668/01

Edexcel GCE

Further Pure Mathematics FP2 Advanced/Advanced Subsidiary

Friday 22 June 2012 – Afternoon

Time: 1 hour 30 minutes

Materials required for examination
Mathematical Formulae (Pink)Items included with question papers
Nil

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation or symbolic differentiation/integration, or have retrievable mathematical formulae stored in them.

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initials and signature. Check that you have the correct question paper.

Answer ALL the questions.

You must write your answer to each question in the space following the question.

When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information for Candidates

A booklet 'Mathematical Formulae and Statistical Tables' is provided.

Full marks may be obtained for answers to ALL questions.

The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2).

There are 8 questions in this question paper. The total mark for this paper is 75.

There are 28 pages in this question paper. Any blank pages are indicated.

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled. You should show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit.

This publication may be reproduced only in accordance with Pearson Education Ltd copyright policy. ©2012 Pearson Education Ltd.

Turn over

Total

PEARSON

Mathematics FP2

■ Past Paper

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Leave	
blank	

2 4 2				
$\left x^2-4\right >3x$				
	(5)			

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Summer 2012 6668 Further Pure Mathematics FP2 **Mark Scheme**

Question Number	Scheme	Marks
1.	$x^2 - 4 = 3x$ and $x^2 - 4 = -3x$, or graphical method, or squaring both sides, leading to $x =$ ($x = -4$, $x = -1$) $x = 1$, $x = 4$ seen anywhere Using only 2 critical values to find an inequality	M1 B1 B1 dM1
	x < 1 $x > 4$ both strict, ignore 'and'	A1 (5)
	Notes	5
	1 st M1 accept $\pm (x^2 - 4) > 3x$ or $\pm (x^2 - 4) = 3x$ Require modulus of parabola and straight line with positive gradient through origin for graphical method. 1 st B1 for $x=1$, 2 nd B1 for $x=4$	
	2 nd M1 dependent upon first M1 A0 for error in solution of quadratic leading to correct answer.	

Mathematics FP2

■ Past Paper

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

6668

Leave	
blank	

2.	The curve C has polar equation

 $r = 1 + 2\cos\theta$, $0 \leqslant \theta \leqslant \frac{\pi}{2}$

Given that <i>O</i> is the pole, find the exact length of the line <i>OP</i> .	
orven that o is the pore, find the exact length of the line of .	(7)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question Number	Scheme	Marks	
2.	$y = r \sin \theta = \sin \theta + 2 \sin \theta \cos \theta$ $\frac{dy}{d\theta} = \cos \theta + 2 \cos 2\theta$ $4 \cos^2 \theta + \cos \theta - 2 = 0$ $\cos \theta = \frac{-1 \pm \sqrt{1 + 32}}{8}$ $OP = r = 1 + \frac{-1 + \sqrt{1 + 32}}{4} = \frac{3 + \sqrt{33}}{4}$ Notes B1 for $\sin \theta + 2 \sin \theta \cos \theta$ or $\sin \theta (1 + 2 \cos \theta)$ 1st M1 for use of Product Rule or Chain Rule (require 2 or condone ½) 1st A1 equation required 2nd M1 Valid attempt at solving 3 term quadratic (usual rules) to give $\cos \theta = \cdots$ 2nd A1 for exact or 3 dp or better (-0.843and 0.593) 3nd M1 for 1+2x 'their $\cos \theta$ ' 3nd A1 for any form A0 if negative solution not discounted.	B1 M1 A1oe M1 A1 M1 A1	

■ Past Paper

This resource was created and owned by Pearson Edexcel

6668

Leave blank

- 3. (a) Express the complex number $-2 + (2\sqrt{3})i$ in the form $r(\cos\theta + i\sin\theta)$, $-\pi < \theta \leqslant \pi$.
 - (b) Solve the equation

$$z^4 = -2 + \left(2\sqrt{3}\right)i$$

giving the roots in the form $r(\cos\theta + i\sin\theta)$, $-\pi < \theta \leqslant \pi$.

(5)

Question Number	Scheme	Marks	
3. (a)	$r = \sqrt{(-2)^2 + (2\sqrt{3})^2} = 4$ $\tan \theta = -\sqrt{3} \text{(Also allow M mark for } \tan \theta = \sqrt{3} \text{)}$ $\text{M mark can be implied by } \theta = \pm \frac{2\pi}{3} \text{or } \theta = \pm \frac{\pi}{3}$ $\theta = \frac{2\pi}{3}$	B1 M1	
(b)	Finding the 4 th root of their r : $r = 4^{\frac{1}{4}}$ (= $\sqrt{2}$) For one root, dividing their θ by 4: $\theta = \frac{2\pi}{3} \div 4 = \frac{\pi}{6}$ For another root, add or subtract a multiple of 2π to their θ and divide by 4 in correct order. $\sqrt{2}(\cos\theta + i\sin\theta)$, where $\theta = -\frac{5\pi}{6}$, $-\frac{\pi}{3}$, $\frac{\pi}{6}$, $\frac{2\pi}{3}$	M1 M1 M1 A1 A1	(5)
(a) (b)	Notes M1 Accept $\pm\sqrt{3}$ or $\pm\frac{1}{\sqrt{3}}$ A1 Accept awrt 2.1. A0 if in degrees. 2^{nd} M1 for awrt 0.52 1^{st} A1 for two correct values 2^{nd} A1 for all correct values values in correct form and no more		8

Mathematics FP2

Past Paper

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

6668

Leave	1
blank	

$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + 5\frac{\mathrm{d}x}{\mathrm{d}t} + 6x = 2\cos t - \sin t$	(9)
	(9)

Question Number	Scheme	Marks
4.	$m^2 + 5m + 6 = 0$ $m = -2, -3$	M1
	C.F. $(x =)Ae^{-2t} + Be^{-3t}$	A1
	$P.I. x = P\cos t + Q\sin t$	D.1
	$\dot{x} = -P\sin t + Q\cos t$	B1
	$\ddot{x} = -P\cos t - Q\sin t$	M1
	$(-P\cos t - Q\sin t) + 5(-P\sin t + Q\cos t) + 6(P\cos t + Q\sin t) = 2\cos t - \sin t$	M1
	-P+5Q+6P=2 and $-Q-5P+6Q=-1$, and solve for P and Q	M1
	$P = \frac{3}{10}$ and $Q = \frac{1}{10}$	A1 A1
	$x = Ae^{-2t} + Be^{-3t} + \frac{3}{10}\cos t + \frac{1}{10}\sin t$	B1 ft
	10 10	
	Notes 1^{st} M1 form quadratic and attempt to solve (usual rules) 1^{st} B1 Accept negative signs for coefficients. Coefficients must be different. 2^{nd} M1for differentiating their trig PI twice 3^{rd} M1 for substituting x , \dot{x} and \ddot{x} expressions	
	4^{th} M1 Form 2 equations in two unknowns and attempt to solve 1^{st} A1 for one correct, 2^{nd} A1 for two correct 2^{nd} B1 for x =their CF + their PI as functions of t	
	Condone use of the wrong variable (e.g. <i>x</i> instead of <i>t</i>) for all marks except final B1.	

Mathematics FP2

■ Past Paper This resource was created and owned by Pearson Edexcel

6669

6668 Leave

blank

5.

$$x\frac{\mathrm{d}y}{\mathrm{d}x} = 3x + y^2$$

(a) Show that

$$x\frac{d^{2}y}{dx^{2}} + (1 - 2y)\frac{dy}{dx} = 3$$
(2)

Given that y = 1 at x = 1,

(b) find a series solution for y in ascending powers of (x-1), up to and including the term in $(x-1)^3$.

(8)

6668

www.mystudybro.com
This resource was created and owned by Pearson Edexcel

Question Number	Scheme	Marks	
5. (a)	$x\frac{d^2y}{dx^2} + \frac{dy}{dx} = 3 + 2y\frac{dy}{dx}$ (Using differentiation of product or quotient and also differentiation of implicit function) $x\frac{d^2y}{dx^2} + (1 - 2y)\frac{dy}{dx} = 3 **ag**$	M1 A1 cso	(2)
(b)	$\left(x\frac{\mathrm{d}^3 y}{\mathrm{d}x^3} + \frac{\mathrm{d}^2 y}{\mathrm{d}x^2}\right) + \dots$	B1	(2)
	$\dots \left[(1-2y)\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - 2\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 \right] = 0$	M1 A1	
	At $x = 1$: $\frac{dy}{dx} = 4$	B1	
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 7 \qquad \frac{\mathrm{d}^3 y}{\mathrm{d}x^3} = 32$	B1, B1	
	$(y=)f(1)+f'(1)(x-1)+\frac{f''(1)(x-1)^2}{2}+\frac{f'''(1)(x-1)^3}{6}$	M1	
	$y = 1 + 4(x-1) + \frac{7}{2}(x-1)^2 + \frac{16}{3}(x-1)^3$ (or equiv.)	A1 ft	(0)
	Notes		(8) 10
(a)	Finding second derivative and substituting into given answer acceptable		
(b)	1 st M1 for differentiating second term to obtain an expression involving		
	$\frac{d^2y}{dx^2}$ and $\left(\frac{dy}{dx}\right)^2$		
	B1B1B1 for 4,7,32 seen respectively 2^{nd} M1 require f(1) or 1, f'(1) etc and x-1 and at least first 3 terms		
	A1 for 4 terms following through their constants Condone $f(x)$ = instead of y =		

Mathematics FP2

■ Past Paper

This resource was created and owned by Pearson Edexcel

Leave

blank

6. (a) Express $\frac{1}{r(r+2)}$ in partial fractions.

(2)

(b) Hence prove, by the method of differences, that

$$\sum_{r=1}^{n} \frac{1}{r(r+2)} = \frac{n(an+b)}{4(n+1)(n+2)}$$

where a and b are constants to be found.

(6)

(c) Hence show that

$$\sum_{r=n+1}^{2n} \frac{1}{r(r+2)} = \frac{n(4n+5)}{4(n+1)(n+2)(2n+1)}$$
(3)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question Number	Scheme	Marks	
6.			
(a)	$\frac{1}{r(r+2)} = \frac{1}{2} \left(\frac{1}{r} - \frac{1}{r+2} \right) = \frac{1}{2r}, -\frac{1}{2r+4}$	B1,B10e	3 \
(b)	$r=1: \frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}\right)$	M1	2)
	$r=2: \frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}\right)$		
	$r = 3: \frac{1}{2} \left(\frac{1}{3} - \frac{1}{5} \right)$		
	$r = n-1$: $\frac{1}{2} \left(\frac{1}{n-1} - \frac{1}{n+1} \right)$		
	$r = n: \frac{1}{2} \left(\frac{1}{n} - \frac{1}{n+2} \right)$	A1	
	Summing: $\sum_{r=1}^{n} \frac{1}{r(r+2)} = \frac{1}{2} \left(1 + \frac{1}{2} - \frac{1}{n+1} - \frac{1}{n+2} \right)$	M1 A1	
	$= \frac{1}{2} \left(\frac{3(n+1)(n+2) - 2(n+1) - 2(n+2)}{2(n+1)(n+2)} \right) = \frac{n(3n+5)}{4(n+1)(n+2)}$	M1 A1cao	
(c)	$\sum_{r=1}^{2n} \frac{1}{r(r+2)} = \frac{2n(6n+5)}{4(2n+1)(2n+2)}$	B1oe	5)
	$S_{2n} - S_n = \frac{2n(6n+5)}{4(2n+1)(2n+2)} - \frac{n(3n+5)}{4(n+1)(n+2)}$	M1	
	$=\frac{n(6n+5)(n+2)-n(3n+5)(2n+1)}{4(n+1)(n+2)(2n+1)}$		
	$= \frac{n(6n^2 + 17n + 10 - 6n^2 - 13n - 5)}{4(n+1)(n+2)(2n+1)} = \frac{n(4n+5)}{4(n+1)(n+2)(2n+1)}$	A1 cso	
	(*ag*)		3)
(a) (b)	1 st and 2 nd B1 Any form is acceptable 1 st M1 must include at least 4 out of 5 of (r=)1,2,3 and n-1, n 1 st A1 require all terms that do not cancel to be accurate 2 nd M1 Summed expression involving all terms that do not cancel	1	1
(-)	2 nd A1 Correct expression 3 rd M1 for attempt to find single fraction 1 st M1 for expression for S		
(c)	1^{st} M1 for expression for $S_{2n} - S_n$		

Past Paper

This resource was created and owned by Pearson Edexcel

Leave blank

7. (a) Show that the substitution y = vx transforms the differential equation

$$3xy^2 \frac{\mathrm{d}y}{\mathrm{d}x} = x^3 + y^3 \tag{I}$$

into the differential equation

$$3v^2x\frac{\mathrm{d}v}{\mathrm{d}x} = 1 - 2v^3 \tag{II}$$

(b) By solving differential equation (II), find a general solution of differential equation (I) in the form y = f(x).

(6)

Given that y = 2 at x = 1,

(c) find the value of $\frac{dy}{dx}$ at x = 1

(2)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question Number	Scheme	Marks
7.		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = v + x \frac{\mathrm{d}v}{\mathrm{d}x}$	
(a)	seen	B1
	$3x^{3}v^{2}\left(v+x\frac{dv}{dx}\right) = x^{3}+v^{3}x^{3} \qquad \Rightarrow \qquad 3v^{2}x\frac{dv}{dx} = 1-2v^{3}$	
	$\begin{pmatrix} 3x & (x + x) & 3x & 4x \\ (x + x) & 3x & 4x$	M1 A1 cso
		(3)
(b)	$\int \frac{3v^2}{1 - 2v^3} \mathrm{d}v = \int \frac{1}{x} \mathrm{d}x$	M1
	$-\frac{1}{2}\ln(1-2v^3) = \ln x \ (+C)$	M1 A1
	$-\ln(1-2v^3) = \ln x^2 + \ln A$	
	$Ax^2 = \frac{1}{1 - 2v^3}$	M1
	$1 - \frac{2y^3}{x^3} = \frac{1}{Ax^2}$	
		D. C. A. A.
	$y = \sqrt[3]{\frac{x^3 - Bx}{2}}$ or equivalent	dM1 A1cso
(c)	Using $y = 2$ at $x = 1$: $12\frac{dy}{dx} = 1 + 8$	(6) M1
	At $x = 1$, $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3}{4}$	A1
	u. T	(2) 11
	Notes	
(a)	M1 for substituting y and $\frac{dy}{dx}$ obtaining an expression in v and x only	
(b)	1 st M1 for separating variables 2 nd M1 for attempting to integrate both sides	
	1 st A1both sides required or equivalent expressions. (Modulus not required.)	
	3 rd M1 Removing logs, dealing correctly with constant	
	4 th M1 dep on 1st M. Substitute $v = \frac{y}{x}$ and rearranging to $y = f(x)$	
(c)	M1 for finding a numerical value for $\frac{dy}{dx}$	
	A1 for correct numerical answer oe.	

Mathematics FP2

Past Paper

This resource was created and owned by Pearson Edexcel

Leave blank

8. The point P represents a complex number z on an Argand diagram such that

|z - 6i| = 2|z - 3|

(a) Show that, as z varies, the locus of P is a circle, stating the radius and the coordinates of the centre of this circle.

(6)

The point Q represents a complex number z on an Argand diagram such that

$$\arg (z - 6) = -\frac{3\pi}{4}$$

(b) Sketch, on the same Argand diagram, the locus of P and the locus of Q as z varies.

(4)

(c) Find the complex number for which both |z-6i|=2|z-3| and $\arg(z-6)=-\frac{3\pi}{4}$

Question Number	Scheme	Marks	
8. (a)	$ x+iy-6i = 2 x+iy-3 $ $x^{2} + (y-6)^{2} = 4[(x-3)^{2} + y^{2}]$ $x^{2} + y^{2} - 12y + 36 = 4x^{2} - 24x + 36 + 4y^{2}$ $3x^{2} + 3y^{2} - 24x + 12y = 0$ $(x-4)^{2} + (y+2)^{2} = 20$ Centre $(4,-2)$, Radius $\sqrt{20} = 2\sqrt{5} = \text{awrt } 4.47$ Centre in correct quad for their passes through O centre in 4 th Half line with positive gradient	M1 M1 A1 M1 A1 A1 M1 A1 A1	(6)
	Correct position, clearly through (6, 0)		(4)
(c)	Equation of line $y = x - 6$ Attempting simultaneous solution of $(x-4)^2 + (y+2)^2 = 20$ and $y = x - 6$ $x = 4 \pm \sqrt{10}$ $(4-\sqrt{10})+i(-2-\sqrt{10})$	B1 M1 A1 A1cao	(4)
(a)	Notes 1^{st} M Substituting $z = x + iy$ oe 2^{nd} M implementing modulus of both sides and squaring. Require Re^2 plus Im^2 on both sides & no terms in i. Condone 2 instead of 4 here. 3^{rd} M1 for gathering terms and attempting to find centre and / or radius		14

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Mathematics FP2 6668

Question Number	Scheme	Marks
	2 nd A1 for centre, 3 rd A1 for radius	
Alt 8(c)	For geometric approach in this part.	
	Centre (4,-2) on line, can be implied.	B1
	Use of Pythagoras or trigonometry to find lengths of isosceles triangle	M1
	$x = 4 - \sqrt{10}$	A1
	$(4-\sqrt{10})+i(-2-\sqrt{10})$	A1cao