Past Paper

This resource was created and owned by Pearson Edexcel

WFM01

Please check the examination deta	ils below	before ente	ring your can	didate information
Candidate surname			Other name	S
Pearson Edexcel International Advanced Level	Centre	e Number		Candidate Number
Monday 14 Ja	anu	ary	2019	9
Afternoon (Time: 1 hour 30 minu	tes)	Paper R	eference V	VFM01/01
Further Pure Managed Second Se	0. 0		tics F	1

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B). Coloured pencils and highlighter pens must not be used.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information

- The total mark for this paper is 75.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each guestion.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

DO NOT WRITE IN THIS AREA

DO NOT WRITE INTHIS AREA

Past	Paper

	2019	www.mystudybro.com Mathem This resource was created and owned by Pearson Edexcel	atics F' WFM0
Pape) [This resource was created and owned by Fearson Edexcer	Leave
1.		point A (12, 12) lies on the parabola with equation $y^2 = 12x$. The point S is the focus his parabola. The line I passes through A and S .	blank
	(a)	Find an equation of the line <i>l</i> .	
	. ,	(3)	
	The	line l meets the directrix of the parabola at the point B .	
	(b)	Find the coordinates of <i>B</i> .	
		(3)	

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

WFM01

January 2019 WFM01 Further Pure Mathematics F1 **Mark Scheme**

Question Number	Scheme	Notes	Marks		
1.	$A(12, 12)$ lies on $y^2 = 12x$. l passes through				
	<i>l</i> meets the directrix of the parabola at <i>B</i>				
(a)	$\{a=3 \Rightarrow S \text{ has coordinates}\}\ (3,0)$		Either states or uses (3, 0)	B1	
(4)			Can be implied by later work		
	Way 1 Both $m_l = \frac{12}{12 - "3"}$ and either • $y = \frac{12}{12 - "3"}(x - "3")$ or • $0 = \frac{12}{12 - "3"}("3") + c \Rightarrow y = \frac{12}{12 - "3"}$ • $12 = \frac{12}{12 - "3"}(12) + c \Rightarrow y = \frac{12}{12 - "3"}$		Correct method for finding the gradient between their S and (12, 12) and a correct method for finding the equation of l	M1	
	$ \frac{\mathbf{Way 2}}{\begin{cases} 3m+c=0\\ 12m+c=12 \end{cases}} \Rightarrow m=, c= \text{ and } y=0 $	(their m) x + their c	Uses $y = mx + c$, their S and $(12, 12)$ to write two linear equations. Finds $m =, c =$ and writes y = (their m)x + their c		
	e.g. $l: y = \frac{12}{9}(x-3), y = \frac{4}{3}x-4, y-12$ 4x-3y-12=0 or $3y=4x-1$	9	Any correct form for the equation of <i>l</i> which can be simplified or un-simplified Note: ignore subsequent working following on from a	A1	
	Note: At least one of either x_s	or v_ must be corr	correct answer seen		(3)
	Trous in least one of entire we	51 75 mast 66 6011	Either states or uses $x = -3$		(5)
(b)	{directrix has equation} $x = -3$		ates or uses $x = -(\text{their } a)$, $a > 0$ ere a is the x -coordinate of their S	M1	
	$y = \frac{12}{9}(-3-3) \ \{=-8\}$	(and not a co		dM1	
	{coordinates of B are} $(-3, -8)$		(-3, -8)	A1	
					(3)
				I	6

www.mystudybro.com

This resource was created and owned by Pearson Edexcel

Mathematics F1
WFM01

Question 1 Notes Give B0 for a = 3 by itself without reference to (3, 0)**1.** (a) Note Give B1 in part (a) for S(3, 0) (and not (3, 0)) stated in part (b) Note Give 1st M1 for stating the x-coordinate of B as -3 or the x-coordinate of B as -(their a), a > 0(b) Note where a is the x-coordinate of their SE.g. Give 1st M1 for B(-3,...)Give A0 for x = -3, y = -8 without reference to (-3, -8)Note Give A0 for x = -3, y = -8 followed by (-8, -3)Note Give A0 if more than one set of coordinates are given for BNote Give B1 for a sketch with either 3 or (3, 0) marked on the x-axis (a), (b)Note Give 1st M1 in part (b) for a sketch with a vertical line drawn at x = -3 with -3 indicated Note Give 1st M1 in part (b) a statement "directrix is x = -3" seen anywhere Note

Leave

blank

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

2.

 $f(z) = z^3 - 2z^2 + 16z - 32$

(a) Show that f(2) = 0

(1)

(b) Use algebra to solve f(z) = 0 completely.

- **(3)**
- (c) Show, on a single Argand diagram, all three roots of the equation f(z) = 0

- (7	1
•	4	,

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question Number		Scheme			Notes	Marks	
2.	$f(z) = z^3$	$-2z^2+16z-32$					
(a)	• {f(2) =	= $ 8 - 8 + 32 - 32 = 0 $ or			H	D.1	
	• {f(2) =	$= $ $(2)^3 - 2(2)^2 + 16(2)$	-32 =	0	Uses working to show that $f(2) = 0$	B1	
						(1)	
(b)					es only $(z-2)$ to find a quadratic factor.		
	$\{f(\tau)-\}$	$(z-2)(z^2+16)$	e.g.	using long di	vision with $(z-2)$ to get as far as $z^2 +$	M1	
	$\{1(2)-\}$	(2 2)(2 +10)			or factorising to give $(z-2)(z^2 +)$	1411	
			No	ote: 1 st M1 car	h be given for sight of a correct $(z^2 + 16)$		
	$\{(z^2+16)$	$0 = 0 \Rightarrow z = \pm 4i$		Correct	method of solving their quadratic factor	M1	
	$\{\mathbf{f}(z)=0$	$\Rightarrow z = $ $\}$ 2, 4 i , – 4 i			2, 4i and – 4i	A1	
				G ••		(3)	
(c)	In	n 🛕		Criteria The number	per 2 plotted correctly on the positive		
	(0	4)		real axis	2 plotted correctly on the positive		
	(0,4	4)			nt on a correct method for solving		
					dratic factor or dependent on		
				O	correct roots of 2, 4i, - 4i		
		(2,0)		Their final two roots of the form $\pm \mu i$, $\mu \neq 0$ or the form $\lambda \pm \mu i$, $\mu \neq 0$, are plotted correctly			
		O Re		Satisfies at least one of the criteria			
				Only 3 r	oots plotted, satisfying both criteria with	B1ft	
				some indication of scale or coordinates stated.			
	(0, -1)	4)			ote: The pair of complex roots should be ximately symmetrical about the real axis	B1ft	
				appro			
				Note: Condone the labels $4i$, $-4i$ marked on the <i>y</i> -axis			
					,	(2)	
				0 4		6	
2 (b)	Note	You can assume $x \equiv$	z for s	Question			
2. (b)	Note Note	No algebraic working			_		
	Note			~	$ii) \{=0\} \Rightarrow z = 2, 4i, -4i$		
	Note				i) $\{=0\}$ by itself, but please note that you	cannot	
	1,000	recover the final M1	•				
	Note				$\Rightarrow (z-2)(z+4i)(z-4i) = 0$ by itself, by	out please	
					A1 marks for work seen in part (c)	1	
	Note	$z = \pm \sqrt{16i}$ unless re-			* * * * * * * * * * * * * * * * * * * *		
	Note	·			ast one of either $z = \sqrt{k}i$ or $z = -\sqrt{k}i$		
	11010						
	Note	So, e.g. give 2^{nd} M1 for $z^2 + 16 = 0 \Rightarrow z = 4i$ Give 2^{nd} M0 for $z^2 + k = 0$, $k > 0 \Rightarrow z = \pm ki$					
	Note	Give 2^{nd} M0 for z^2 +					
	Note				$z = \sqrt{k}$ and $z = -\sqrt{k}$		
	Note		-		+" a " z $+$ " b " can be factorised then		
					risation leading to $z =$ thod of factorisation to solve their 3TQ.		
		Officiwise, give 2 W	10 101 8	apprying a mei	and of factorisation to solve their 31Q.		

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

	Question 2 Notes Continued						
2. (b)	Note Reminder: Method Mark for solving a 3TQ, " $az^2 + bz + c = 0$ "						
		Formula: Attempt to use the correct formula (with values for a , b and c)					
		Completing the square: $\left(z \pm \frac{b}{2}\right)^2 \pm q \pm c = 0, q \neq 0$, leading to $z =$					
	Note	Send to review solutions involving α , β , γ roots. E.g. $-2 = -(\alpha + \beta + \gamma)$					
(c)	Note	ote Drawing the lines $z = 2$, $z = 4i$, $z = -4i$ instead of plotting the points $(2, 0)$, $(0, 4)$ and					
		(0, -4) is B0 B0					
	Note	Indication of coordinates includes stating e.g. $z_1 = 2$, $z_2 = 4i$, $z_3 = -4i$ and plotting z_1 , z_2 and					
		z_3 in their relevant positions on an Argand diagram					
(b), (c)	Note	You cannot recover work for part (b) in part (c)					

This resource was created and owned by Pearson Edexcel

WFM01

Leave blank

DO NOT WRITE IN THIS AREA

(a) Use the standard results for $\sum_{r=1}^{n} r$ and $\sum_{r=1}^{n} r^2$ to show that, for all positive integers n,

$$\sum_{r=1}^{n} (2r+5)^2 = \frac{n}{3} [(an+b)^2 + c]$$

where a, b and c are integers to be found.

(5)

(b) Use the answer to part (a) to evaluate $\sum_{r=0}^{100} (2r+5)^2$

(2)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Mathematics F1

Question Number		Scheme	Notes	Marks		
3. (a)	$\sum_{r=1}^{n} (2r + 5)$	$(5)^{2} = 4\sum_{r=1}^{n} r^{2} + 20\sum_{r=1}^{n} r + \sum_{r=1}^{n} 25$				
	(1) (1	Attempts to expand $(2r+5)^2$ and attempts to substitute at least one formula for either $\sum_{r=1}^{n} r^2 \text{ or } \sum_{r=1}^{n} r \text{ into their resulting expression}$	M1 (B1 on ePEN)		
	$=4\left(\frac{1}{6}n(n+1)\right)$	$(n+1)(2n+1) + 20\left(\frac{1}{2}n(n+1)\right) + 25n$	$4\left(\frac{1}{6}n(n+1)(2n+1)\right) + 20\left(\frac{1}{2}n(n+1)\right)$ which can be simplified or un-simplified	A1 (M1 on ePEN)		
			Use of $\sum_{r=1}^{n} 1 = n$	B1		
	$=\frac{1}{3}n\big(2(n$	(n+1)(2n+1) + 30(n+1) + 75	Obtains an expression of the form $\alpha n(n+1)(2n+1) + \beta n(n+1) + \lambda n$; $\alpha, \beta, \lambda \neq 0$ and attempts to factorise out at least n	M1		
	$=\frac{1}{3}n(4n^2$	+6n+2+30n+30+75)				
	$=\frac{n}{3}(4n^2-$	+ 36 <i>n</i> + 107)				
	$=\frac{n}{3}\Big[(2n+1)^{n}\Big]$	$+9)^2 + 26$ $\left\{ \text{or } \frac{n}{3} \left[(-2n-9)^2 + 26 \right] \right\}$	Correct completion Note: $a = 2$, $b = 9$ and $c = 26$ or $a = -2$, $b = -9$ and $c = 26$	A1		
				(5)		
(b)	$\begin{cases} \sum_{r=0}^{100} (2r + \frac{1}{2})^{100} \end{cases}$	$(-5)^2 = $	Substitutes $n = 100$ into their expression for			
		, , , , , , , , , , , , , , , , , , , ,	$\sum_{r=1}^{\infty} (2r+5)^2 \text{ which is in terms of } n,$ and adds $(5)^2$ or 25 or $(2(0)+5)^2$ o.e. to the result	M1		
	(3707) + 25 = 1456925	Obtains 1456925	A1		
				(2)		
			Question 3 Notes	,		
3. (a)	Note	Applying e.g. $n = 1$, $n = 2$ and n formulae to give $a = 2$, $b = 9$ and	= 3 to the printed equation without applying the stall $c = 26$ is M0 A0 B0 M0 A0	ndard		
	Alt 1	Alt Method 1 (Award the first	three marks using the main scheme)			
		Using $\frac{4}{3}n^3 + 12n^2 + \frac{107}{3}n \equiv \frac{a^2}{3}$				
	M1	Equating coefficients to find at least two of $a =, b =$ or $c =$ and at least one of				
	A1	either $a = 2$, $b = 9$ or $c = 26$ or $a = -2$, $b = -9$ and $c = 26$ Finds $a = 2$, $b = 9$ and $c = 26$ or $a = -2$, $b = -9$ and $c = 26$				
	Note	Allow final M1A1 for $\frac{4}{3}n^3 + 12n^2 + \frac{107}{3}n \rightarrow \frac{n}{3}[(2n+9)^2 + 26]$ with no incorrect working.				
	Note	A correct proof of $\sum_{r=1}^{n} (2r+5)^2 =$	$= \frac{n}{3} \left[(2n+9)^2 + 26 \right]$ followed by stating an incorrect	et		
		7 - 1	M1 A1 B1 M1 A1 (ignore subsequent working)			

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

	VVFIVIOT	
1456925		
5) ²		
		1

		Question 3 Notes Continued					
3. (b)	Note	Allow M1 for $\frac{100}{3}(4(100)^2 + 36(100) + 107) + (5)^2$ and A1 for obtaining 1456925					
	Note	Allow M1 for $4\left(\frac{1}{6}(100)(101)(201)\right) + 20\left(\frac{1}{2}(100)(101)\right) + 25(100) + (5)^2$					
		$\{=1353400 + 101000 + 2500 + 25\}$ and A1 for obtaining 1456925					
	Note	dependent on obtaining 1st M1, 1st A1 and B1 in part (a)					
		Allow M1 A1 for 1456900 + 25 = 1456925					
	Note	Give M0 A0 for writing down 1456925 by itself with no supporting working					
	Note	Give M0 A0 for listing individual terms					
		i.e $\sum_{r=0}^{100} (2r+5)^2 = 5^2 + 7^2 + 9^2 + 11^2 + + 205^2 = 1456925$, by itself is M0 A0					
	Note	Give M0 A0 for applying					
		$\frac{100}{3} \left[(2(100) + 9)^2 + 26 \right] + \frac{(-1)}{3} \left[(2((-1)) + 9)^2 + 26 \right] = 145690025 = 1456925$					

blank

Leave

4.

$$f(x) = 2x^3 - \frac{7}{x^2} + 16, \quad x \neq 0$$

The equation f(x) = 0 has a single root α between x = -2 and x = -1

(a) Starting with the interval [-2, -1], use interval bisection twice to find an interval of width 0.25 that contains α .

(3)

The equation f(x) = 0 also has a single root β in the interval [0.6, 0.7].

(b) Taking 0.65 as a first approximation to β , apply the Newton-Raphson procedure once to f(x) to obtain a second approximation to β , giving your answer to 4 decimal places.

Winter	2019
441116	2013

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question Number			Scheme			,		Notes		Marks
4.	Given f(x	Given $f(x) = 2x^3 - \frac{7}{x^2} + 16$, $x \ne 0$; Roots $\alpha, \beta: -2 \le \alpha \le -1$ and $0.6 \le \beta \le 0.7$								
(a)	f(-1.5) =				Attempts to 6	evaluate $f(-1.5)$	M1			
Way 1	f(-1.75) =						_	endent on the putes $f(-1.75)$ (an	revious M mark ad not $f(-1.25)$	dM1
	f(-1.5) = f(-1.75) =	f(-2) = -1.75 or $f(-1) = 7f(-1) = 6.1388 or \frac{221}{36}f(-1.75) = 2.9955 or \frac{671}{224}f(-1.75) = 2.9955$ interval is $[-2, -1.75]$			dependent on the 2 previous marks Both • $f(-2)$ correct or correct awrt (or truncated) to 1sf or $f(-1) = 7$ and • $f(-1.5)$ and $f(-1.75)$ correct or correct awrt (or truncated) to 1 sf and the correct interval stated Note: Allow $-2 \le x \le -1.75$ or $-2 < x < -1.75$ or $-2 \le \alpha \le -1.75$ or $-2 < \alpha < -1.75$ or $(-2, -1.75)$ equivalent in words. Condone -21.75 Allow a mixture of "ends". Do not allow incorrect statements such as $-1.75 < \alpha < -2$ or $(-1.75, -2)$ or $-1.75 - 2$ unless they are recovered.			A1		
		Note	e that some ca	ndidates o	Ignore the subsequent iteration of $f(-1.875)$ didates only indicate the sign of f and not its value.			(3)		
								but not the A m		()
(a)		Com	mon approac	h in the fo	rm of a	table (use the r	nark scheme ab		
Way 2	а		f(a)	b		f((b)	<u>a+b</u> 2	$f\left(\frac{a+b}{2}\right)$	
	-2		-1.75	_1			7	-1.5	6.1388	
	-2		-1.75	-1.			88	-1.75	2.9955	
			so interval is –	$-2 \le \alpha \le -1$	1.75 wo	uld sco	re full m	arks in part (a)		
(b)	f'(x) = 6x	$x^2 + 14$	$\cdot x^{-3}$					**	$Bx^{-3}; A, B \neq 0$	M1
				Correct differentiation which can be simplified or un-simplified dependent on the previous M mark				A1		
	$\left\{\beta \simeq 0.65\right\}$	$5 - \frac{f(0)}{f'(0)}$	$\left \frac{0.65}{0.65} \right \Rightarrow \beta \simeq$	$0.65 - \frac{-0.5}{5}$.018797 3.51360	33728 9719		Valid attempt at N usir	Newton-Raphson ag their values of (55) and f'(0.65)	dM1
	(0.00	02512	(22) 2	0.6504	1)		dep		previous marks	A1
	$\{\beta = 0.650\}$	035126	$\{\beta 23\} \Rightarrow \beta = \beta$	u.63U4 (4 ₁	ap)		(equent iteration	cso cao
	Correct	differ	entiation follo	wed by a c	correct	answer		4 scores full ma		(4)
				•				arks in part (b)	,	
							N T :			7
4 ()	TNT 4	Cirr	2nd MO at 1 AO	for 222-1		stion 4		f(1.75)		
4. (a)	Note		2 nd M0 and A0							
	Note		ot allow "interv						aa of avaluating	
	Note		thod of evaluates st one of either) with <i>no eviden</i>	ce of evaluating	
	Note							_1 75 in (_2 _	1 75)	
	Note Do not confuse the -1.75 in $f(-2) = -1.75$ with the -1.75 in $(-2, -1.75)$									

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Mathematics F1

		Question 4 Notes Continued
4. (b)	dM1	This mark can be implied by applying at least one correct <i>value</i> of either $f(0.65)$ or their
		$f'(0.65)$ (where $f'(0.65)$ is found using their $f'(x)$) to 1 significant figure in $0.65 - \frac{f(0.65)}{f'(0.65)}$.
		So just $0.65 - \frac{f(0.65)}{f'(0.65)}$ with an incorrect answer and no other evidence scores final dM0A0.
	Note	If you see $0.65 - \frac{f(0.65)}{f'(0.65)} = 0.6504$ with no algebraic differentiation, then send the response to
		review.
	Note	You can imply the M1 A1 marks for algebraic differentiation for either
		• $f'(0.65) = 6(0.65)^2 + 14(0.65)^{-3}$
		• f'(0.65) applied correctly in $\beta \approx 0.65 - \frac{2(0.65)^3 - \frac{7}{(0.65)^2} + 16}{6(0.65)^2 + 14(0.65)^{-3}}$
	Note	Differentiating INCORRECTLY to give $f'(x) = 6x^2 - 14x^{-3}$ leads to
		$\beta \simeq 0.65 - \frac{-0.01879733728}{-48.44360719} = 0.6496119749 = 0.6496 (4 dp)$
		This response should be awarded M1 A0 dM1 A0
	Note	Differentiating INCORRECTLY to give $6x^2 - 14x^{-3}$ and
		$\beta \approx 0.65 - \frac{f(0.65)}{f'(0.65)} = 0.6496$ is M1 A0 dM1 A0

DO NOT WRITE IN THIS AREA

Past Paper

The rectangular hyperbola H has equation xy = 16

The point P, on H, has coordinates $\left(4p, \frac{4}{p}\right)$ where p is a non-zero constant.

(a) Show, using calculus, that the tangent to H at the point P has equation

$$x + p^2 y = 8p$$

(4)

Given that the tangent to H at the point P passes through the point (7, 1)

(b) use algebra to find the coordinates of the two possible positions of P.

(4)

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question Number	Scheme			Notes	Marks	
5.	H: xy = 16; P Tangent to H at P_1	, –	•			
(a)	$y = \frac{16}{x} = 16x^{-1} \Rightarrow \frac{dy}{dx} = -16x^{-2} \text{ or } -16x^{-2}$ $xy = 16 \Rightarrow x\frac{dy}{dx} + y = 0$ $x = 4t, y = \frac{4}{t} \Rightarrow \frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx} = -\left(\frac{4}{t^2}\right)$	the	$\frac{dy}{dx} = \pm k x^{-2}; k \neq 0$ Uses implicit differentiation to give $\pm x \frac{dy}{dx} \pm y$ ir $\frac{dy}{dt} \times \frac{1}{\text{their } \frac{dy}{dt}};$ Condone $t \equiv p$	M1		
	So at P , $m_T = -\frac{1}{p^2}$		Correct calc	ulus work leading to $m_T = -\frac{1}{p^2}$	A1	
	• $y - \frac{4}{p} = -\frac{1}{p^2}(x - 4p)$ or • $\frac{4}{p} = -\frac{1}{p^2}(4p) + c \implies y = -\frac{1}{p^2}x + \text{their}$	ir c		Correct straight line method for an equation of the tangent where $m_T \left(\neq \frac{-1}{\text{their } m_T} \text{ or } \neq \frac{1}{\text{their } m_T} \right)$ is found by using calculus. Note: m_T must be a function of p Note: Condone (slip) of using $m_T = -(\text{their } m_T)$	M1	
	Correct algebra leading to $x + p^2y = 8p$	*		Correct solution only	A1 *	(4)
(b)	$\{(7,1) \Rightarrow \} 7 + p^2 = 8p$	N	ote: Condone	y = 1 into the given equation or their answer to part (a). substituting $x = 1$, $y = 7$ into the or their answer to part (a) for M1	M1	(4)
	$\{ \Rightarrow p^2 - 8p + 7 = 0 \}$					
	$(p-7)(p-1) = 0 \Rightarrow p = \dots$	(Correct meth	endent on the previous M mark and (e.g. factorising, applying the nula or completing the square) of solving a 3TQ to find $p =$	dM1	
	${p=1 \Rightarrow } x=4, y=4$ ${p=7 \Rightarrow } x=28, y=\frac{4}{7} \text{ or awrt } 0.57$		given equa	substituing $x = 7$, $y = 1$ into the tion or their answer to part (a) one correct set of corresponding values for $x =$ and $y =$	A1	
	{So P can be} $(4, 4), (28, \frac{4}{7})$		Bot	h correct sets of coordinates of B	A1	
						(4)
						8

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

		Question 5 Notes
5. (a)	Note	Allow $yp^2 + x = 8p$ or $8p = x + p^2y$ or $8p = p^2y + x$ for the final A1
(b)	Note	Do not confuse $(7, 1)$ or $x = 7$, $y = 1$ with $p = 7, 1$
	Note	A decimal answer of e.g. (4, 4), (28, 0.57) (without a correct exact answer) is 2 nd A0
	Note	Imply the dM1 mark for writing down the correct roots for their quadratic equation
		E.g. $7 + p^2 = 8p$ or $p^2 - 8p + 7 = 0 \rightarrow p = 7, 1$
	Note	E.g. give dM0 for $7 + p^2 = 8p$ or $p^2 - 8p + 7 = 0 \rightarrow p = -7, -1$ [incorrect solution]
		with NO INTERMEDIATE working.
	Note	Give M1 dM1 A1 for either
		• $7 + p^2 = 8p \rightarrow x = 4, y = 4 \text{ or } (4, 4)$
		• $7 + p^2 = 8p \rightarrow x = 28, y = \frac{4}{7} \text{ or awrt } 0.57 \text{ or } \left(28, \frac{4}{7}\right) \text{ or } \left(28, \text{ awrt } 0.57\right)$
		with NO INTERMEDIATE working.
	Note	Give M1 dM1 A1 A1 for
		• $7 + p^2 = 8p \rightarrow (4, 4), \left(28, \frac{4}{7}\right)$
		with NO INTERMEDIATE working.
	Note	Give M0 dM0 A0 A0 for writing down $(4, 4)$, $\left(28, \frac{4}{7}\right)$ with no prior working.
	Note	Only a maximum of M1 dM1 A0 A0 can be scored for
		substituting for $x = 1$, $y = 7$ (and not $x = 7$, $y = 1$) into $x + p^2y = 8p$
		Note: $x = 1$, $y = 7 \Rightarrow 1 + 7p^2 = 8p \Rightarrow (7p - 1)(p - 1) \Rightarrow p = \frac{1}{7}, 1 \Rightarrow (\frac{4}{7}, 28), (4, 4)$
	Note	Alt 1 Method
		• $x=7$, $y=1 \Rightarrow 7+p^2=8p \Rightarrow (p-1)(p-7) \Rightarrow p=1, 7$
		• $p=1 \Rightarrow x+(1)y=8(1)$ and $x+\frac{16}{x}=8 \Rightarrow x^2-8x+16=0 \Rightarrow (x-4)(x-4)=0$
		$\Rightarrow x = 4, y = 4 \Rightarrow (4, 4)$
		• $p = 7 \implies x + 49y = 56$ and $x + 49\left(\frac{16}{x}\right) = 56 \implies x^2 - 56x + 784 = 0 \implies (x - 28)(x - 28) = 0$
		$\Rightarrow x = 28, \ y = \frac{4}{7} \Rightarrow \left(28, \frac{4}{7}\right)$
	Note	Incorrect method of substituting $xy = 16$ and $(7, 1)$ into $x + p^2y = 8p$
		Give M0 dM0 A0 A0 for
		• $x + p^2 \left(\frac{16}{x}\right) = 8p$ and $x = 7 \Rightarrow 7 + \frac{16}{7}p^2 = 8p \Rightarrow 16p^2 - 56p + 49 = 0 \Rightarrow (4p - 7)(4p - 7) = 0$
		$\Rightarrow p = \frac{7}{4} \Rightarrow x = 7, \ y = \frac{16}{7} \Rightarrow \left(7, \frac{16}{7}\right)$
		• $\frac{16}{y} + p^2 y = 8p$ and $y = 1 \Rightarrow 16 + p^2 = 8p \Rightarrow p^2 - 8p + 16 = 0 \Rightarrow (p-4)(p-4) = 0$
		$\Rightarrow p = 4 \Rightarrow x = 16, \ y = 1 \Rightarrow (16, 1)$
	Note	Give M1 dM0 A0 A0 for
		• $x = 7$, $y = 1$ into $x + p^2y = 8p \Rightarrow 7 + p^2 = 8 \Rightarrow (p+1)(p-1) \Rightarrow p = 1, -1 \Rightarrow (4, 4), (-4, -4)$

It is given that α and β are roots of the equation

$$12x^2 - 3x + 4 = 0$$

Without solving the equation,

(a) find the exact value of
$$\frac{2}{\alpha} + \frac{2}{\beta}$$

(3)

(b) find a quadratic equation that has roots $\frac{2}{\alpha} - \beta$ and $\frac{2}{\beta} - \alpha$ giving your answer in the form $ax^2 + bx + c = 0$, where a, b and c are integers to be found. **(6)**

DO NOT WRITE IN THIS AREA

www.mystudybro.comThis resource was created and owned by Pearson Edexcel **Mathematics F1**

Question Number		Scheme	Notes	Marks
6.		$12x^2$	$-3x+4=0$ has roots α , β	
(a)	$\alpha + \beta = \frac{1}{1}$	$\frac{3}{2}$ or $\frac{1}{4}$, $\alpha\beta = \frac{4}{12}$ or $\frac{1}{3}$	Both $\alpha + \beta = \frac{3}{12}$ or $\frac{1}{4}$ and $\alpha\beta = \frac{4}{12}$ or $\frac{1}{3}$, seen or implied	B1
	$\frac{2}{\alpha} + \frac{2}{\beta} =$	$\frac{2\beta + 2\alpha}{\alpha\beta}$	States or uses $\frac{2}{\alpha} + \frac{2}{\beta} = \frac{2\beta + 2\alpha}{\alpha\beta}$ or $\frac{2(\alpha + \beta)}{\alpha\beta}$	M1
		$2(\frac{3}{12})$ 3	dependent on BOTH previous marks being awarded	A1
	=	$\frac{2\left(\frac{3}{12}\right)}{\left(\frac{4}{12}\right)} = \frac{3}{2}$	$\frac{3}{2}$ or $\frac{6}{4}$ or 1.5 from correct working	cso cao
			2 1	(3)
(b)	Sum = $\frac{2}{3}$	$\frac{2}{\alpha} - \beta + \frac{2}{\beta} - \alpha$	Uses at least one of their $\frac{2}{\alpha} + \frac{2}{\beta}$ or their $(\alpha + \beta)$ in an	
	_		attempt to find a numerical value for the sum of	M1
		$+\frac{2}{\beta}-(\alpha+\beta)$	$\left(\frac{2}{\alpha} - \beta\right)$ and $\left(\frac{2}{\beta} - \alpha\right)$	
	$=\frac{3}{2}$	$-\frac{1}{4} = \frac{5}{4}$	Correct sum of $\frac{5}{4}$ or $\frac{15}{12}$ or 1.25 which can be implied	A1
	Product =	$=\left(\frac{2}{\alpha}-\beta\right)\left(\frac{2}{\beta}-\alpha\right)$	Expands $\left(\frac{2}{\alpha} - \beta\right) \left(\frac{2}{\beta} - \alpha\right)$ to give $\frac{P}{\alpha\beta} + Q + R\alpha\beta$;	
		(6.7)	$P, Q, R \neq 0$ and uses their $\alpha\beta$ at least once in an attempt to find a numerical value for the product of	M1
	=	$=\frac{4}{\alpha\beta}-2-2+\alpha\beta$	(-)	
		$=\frac{4}{\left(\frac{1}{2}\right)}-2-2+\frac{1}{3}=\frac{25}{3}$	$\left(\frac{2}{\alpha} - \beta\right)$ and $\left(\frac{2}{\beta} - \alpha\right)$	
		$\left(\frac{1}{3}\right)$ 3 3	Correct product of $\frac{25}{3}$ or $8\frac{1}{3}$ or 8.3 or $\frac{100}{12}$	A1
	, 5	25	Applies $x^2 - (\text{sum})x + \text{product (can be implied)}$,	3.61
	$x^2 - \frac{5}{4}x$	$+\frac{1}{3}=0$	where sum and product are numerical values. Note: " = 0" is not required for this mark	M1
	$12x^2 - 15$	x + 100 = 0	Any integer multiple of $12x^2 - 15x + 100 = 0$, including the "=0"	A1 cso
			mending the =0	(6)
				9
			Question 6 Notes	
6. (a)	Note		$\frac{+\sqrt{183}i}{24}, \frac{3-\sqrt{183}i}{24} \text{ and then stating } \alpha+\beta=\frac{1}{4}, \ \alpha\beta=\frac{1}{3} \text{ or}$	
		$\alpha + \beta = \frac{3 + \sqrt{183}i}{24} + \frac{3 - 3}{24}$	$\frac{-\sqrt{183}i}{24} = \frac{1}{4} \text{ and } \alpha\beta = \left(\frac{3+\sqrt{183}i}{24}\right)\left(\frac{3-\sqrt{183}i}{24}\right) = \frac{1}{3} \text{ scores } E$	30
	Note	Those candidates who the	ten apply $\alpha + \beta = \frac{4}{5}$, $\alpha\beta = \frac{3}{5}$, having written down/applied	
		$\alpha, \beta = \frac{3 + \sqrt{183}i}{24}, \frac{3 - \sqrt{2}}{24}$	$\frac{183 i}{4}$, can only score the M mark in part (a) for $\frac{2}{\alpha} + \frac{2}{\beta} = \frac{2}{3}$	$\frac{\beta + 2\alpha}{\alpha\beta}$
	Note	Give B0 M0 A0 for $\frac{2}{\alpha}$ +	$\frac{2}{\beta} = \frac{2}{\left(\frac{3+\sqrt{183}\mathrm{i}}{24}\right)} + \frac{2}{\left(\frac{3-\sqrt{183}\mathrm{i}}{24}\right)} = \frac{3}{2}$	

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

		Question 6 Notes Continued				
6. (a)	Note Give B0 M1 A0 for $\frac{2}{\alpha} + \frac{2}{\beta} = \frac{2\beta + 2\alpha}{\alpha\beta} = \frac{2\left(\frac{3-\sqrt{183}i}{24}\right) + 2\left(\frac{3+\sqrt{183}i}{24}\right)}{\left(\frac{3+\sqrt{183}i}{24}\right)\left(\frac{3-\sqrt{183}i}{24}\right)} = \frac{3}{2}$					
	Note	Allow B1 for both $S = \frac{1}{4}$ and $P = \frac{1}{3}$ or	for both $\sum = \frac{1}{4}$ and $\prod = \frac{1}{3}$			
(b)	Note	A correct method leading to $a = 12$, $b = 12x^2 - 15x + 100 = 0$ is final M1A0	A correct method leading to $a = 12$, $b = -15$, $c = 100$ without writing a final answer of			
	Note	5 25	Using $\frac{3+\sqrt{183}i}{24}$, $\frac{3-\sqrt{183}i}{24}$ explicitly to find the sum and product of $\left(\frac{2}{\alpha}-\beta\right)$ and $\left(\frac{2}{\beta}-\alpha\right)$			
	Note	T 3	$\alpha + 100 = 0$ scores M0 A0 M0 A0 M1A0 in part (b) $\beta = \frac{1}{4}, \alpha\beta = \frac{1}{3}, \frac{2}{\alpha} + \frac{2}{\beta} = \frac{3}{2} \text{and applying}$			
		$\begin{cases} \alpha + \beta = \frac{1}{4}, \\ \alpha\beta = \frac{1}{3}, \frac{2}{\alpha} + \frac{2}{\beta} = \frac{3}{2} \text{ can} \end{cases}$ E.g. Score M1 A1 M1 A1 M1 A1 for				
		• Sum = $=\frac{2}{\alpha} - \beta + \frac{2}{\beta} - \alpha = \frac{2}{\alpha}$	<i>p</i>			
			$\frac{4}{\alpha\beta} - 2 - 2 + \alpha\beta = \frac{4}{\left(\frac{1}{3}\right)} - 2 - 2 + \frac{1}{3} = \frac{25}{3}$			
		• $x^2 - \frac{5}{4}x + \frac{25}{3} = 0 \Rightarrow 12x^2 - 15$	x + 100 = 0			
	Note	Alternative method for finding the sur	<u>n</u>			
		Sum = $\frac{2}{\alpha} - \beta + \frac{2}{\beta} - \alpha = \frac{2\beta - \alpha\beta^2 + 2}{\alpha\beta}$	$\frac{2\alpha - \alpha^2 \beta}{2\alpha + \alpha^2 \beta} = \frac{2(\alpha + \beta) - \alpha \beta(\beta + \alpha)}{2\alpha + \alpha^2 \beta}$			
			$\omega \rho$			
		$= \frac{2(\frac{1}{4}) - (\frac{1}{3})(\frac{1}{4})}{(\frac{1}{3})} = \frac{\frac{1}{2} - \frac{1}{12}}{\frac{1}{3}} = \frac{\frac{5}{12}}{\frac{1}{3}} = \frac{15}{12}$	$r=\frac{5}{4}$			
	Note	Alternative method for finding the pro				
			Expands $\left(\frac{2}{\alpha} - \beta\right) \left(\frac{2}{\beta} - \alpha\right)$ to give			
		Product = $\left(\frac{2}{\alpha} - \beta\right) \left(\frac{2}{\beta} - \alpha\right)$	$\frac{(\alpha\beta-2)^2}{\alpha}$ and uses their $\alpha\beta$, at least once in			
		$= \frac{(\alpha\beta - 2)^2}{\alpha\beta} = \frac{((\frac{1}{3}) - 2)^2}{(\frac{1}{3})}$	an attempt to find a numerical value for the			
		$=\frac{\frac{25}{9}}{(\frac{1}{2})} = \frac{25}{3}$	product of $\left(\frac{2}{\alpha} - \beta\right)$ and $\left(\frac{2}{\beta} - \alpha\right)$			
		(3) 3	Correct product of $\frac{25}{3}$ or $8\frac{1}{3}$ or 8.3 A1			

blank

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Leave

7.

$$\mathbf{P} = \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix}$$

(a) Show that $P^3 = 8I$, where I is the 2 × 2 identity matrix.

(3)

(b) Describe fully the transformation represented by the matrix **P** as a combination of two simple geometrical transformations.

(4)

(c) Find the matrix P^{35} , giving your answer in the form

$$\mathbf{P}^{35} = 2^k \begin{pmatrix} -1 & a \\ b & -1 \end{pmatrix}$$

where k is an integer and a and b are surds to be found.

(2)

This resource was created and owned by Pearson Edexcel

WFM01 **Question** Scheme Notes Marks Number $\mathbf{P} = \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix}; \text{ (a) } \mathbf{P}^3 = 8\mathbf{I}; \text{ (c) } \mathbf{P}^{35} = 2^k \begin{pmatrix} -1 & a \\ b & -1 \end{pmatrix}$ 7. $\left\{\mathbf{P}^2 = \right\} \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix} \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix} = \begin{pmatrix} -2 & 2\sqrt{3} \\ -2\sqrt{3} & -2 \end{pmatrix}$ Finds P^2 (a) (which can be un-simplified) with M1 at least 3 correct elements for \mathbf{P}^2 dependent on $\{\mathbf{P}^3 =\} \begin{pmatrix} -2 & 2\sqrt{3} \\ -2\sqrt{3} & -2 \end{pmatrix} \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix} = \begin{pmatrix} 8 & 0 \\ 0 & 8 \end{pmatrix} = 8\mathbf{I} *$ the previous M mark Multiplies \mathbf{P}^2 by \mathbf{P} or multiplies dM1 **P** by P^2 to give a 2×2 matrix of or $\{\mathbf{P}^3 =\} \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix} \begin{pmatrix} -2 & 2\sqrt{3} \\ -2\sqrt{3} & -2 \end{pmatrix} = \begin{pmatrix} 8 & 0 \\ 0 & 8 \end{pmatrix} = 8\mathbf{I} *$ 4 elements for P^3 with at least 2 correct elements A1* Correct proof with no errors (3) M1 Enlargement or enlarge or dilation (b) Enlargement about (0,0) or about O or about the origin Centre (0,0) with scale factor 2 **A**1 and scale or factor or times and 2 Rotation or rotate (condone turn) **Rotation** M1 **Both** 120 degrees or $\frac{2\pi}{3}$ 120 degrees (anticlockwise) about (0, 0) or 240 degrees clockwise or $\frac{4\pi}{2}$ clockwise A1 and about (0,0) or about O or about the origin **(4)** (c) $\mathbf{P}^{35} = (\mathbf{P}^3)^{11} \times \mathbf{P}^2$ $= (8\mathbf{I})^{11} \times \begin{pmatrix} -2 & 2\sqrt{3} \\ -2\sqrt{3} & -2 \end{pmatrix} = (2\mathbf{I})^{33} \times \begin{pmatrix} -2 & 2\sqrt{3} \\ -2\sqrt{3} & -2 \end{pmatrix}$ $((8\mathbf{I})^{11} \text{ or } (8)^{11}) \times (\text{their } \mathbf{P}^2)$ Wav 1 M1 $((2I)^{33} \text{ or } (2)^{33}) \times (\text{their } \mathbf{P}^2)$ $=2^{34}\begin{pmatrix} -1 & \sqrt{3} \\ -\sqrt{2} & 1 \end{pmatrix}$ Correct answer **Note:** k = 34, $a = \sqrt{3}$, $b = -\sqrt{3}$ **(2)** $\mathbf{P}^{35} = (\mathbf{P}^3)^{12} \times \mathbf{P}^{-1} \text{ or } \mathbf{P}^{35} = \mathbf{P}^{36} \times \mathbf{P}^{-1}$ (c) $= (8\mathbf{I})^{12} \times \frac{1}{(-1)(-1) - (-\sqrt{3})(\sqrt{3})} \begin{pmatrix} -1 & \sqrt{3} \\ -\sqrt{3} & -1 \end{pmatrix} \qquad ((8\mathbf{I})^{12} \text{ or } (8)^{12}) \times \frac{1}{\text{their det}(\mathbf{P})} \begin{pmatrix} -1 & \sqrt{3} \\ -\sqrt{3} & -1 \end{pmatrix}$ Way 2 $= (2\mathbf{I})^{36} \times \frac{1}{(-1)(-1) - (-\sqrt{3})(\sqrt{3})} \begin{pmatrix} -1 & \sqrt{3} \\ -\sqrt{3} & -1 \end{pmatrix} \qquad ((2\mathbf{I})^{36} \text{ or } (2)^{36}) \times \frac{1}{\text{their det}(\mathbf{P})} \begin{pmatrix} -1 & \sqrt{3} \\ -\sqrt{3} & -1 \end{pmatrix}$ M1or $\left\{ = \left(2^{36}\right) \left(\frac{1}{4}\right) \begin{pmatrix} -1 & \sqrt{3} \\ -\sqrt{3} & -1 \end{pmatrix} \right\} = 2^{34} \begin{pmatrix} -1 & \sqrt{3} \\ -\sqrt{3} & -1 \end{pmatrix}$ Correct answer **A**1 **Note:** k = 34, $a = \sqrt{3}$, $b = -\sqrt{3}$ (2)

This resource was created and owned by Pearson Edexcel

WFM01 **Question 7 Notes** Proof must contain the final steps of $= \begin{pmatrix} 8 & 0 \\ 0 & 8 \end{pmatrix}$ and $= 8\mathbf{I}$ or $= \begin{pmatrix} 8 & 0 \\ 0 & 8 \end{pmatrix}$ and = RHS7. (a) Note Other acceptable proofs for M1 dM1 A1 include Note $\bullet \quad \mathbf{P}^3 = \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix} \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix} \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix} \text{ or } \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix}$ $= \begin{pmatrix} -2 & 2\sqrt{3} \\ -2\sqrt{3} & -2 \end{pmatrix} \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix} = \begin{pmatrix} 8 & 0 \\ 0 & 8 \end{pmatrix} = 8\mathbf{I} *$ $\bullet \quad \mathbf{P}^3 = \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix} \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix} \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix} \text{ or } \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix}^3$ $= \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix} \begin{pmatrix} -2 & 2\sqrt{3} \\ -2\sqrt{3} & -2 \end{pmatrix} = \begin{pmatrix} 8 & 0 \\ 0 & 8 \end{pmatrix} = 8\mathbf{I} *$ • $\mathbf{P}^3 = \begin{pmatrix} -2 & 2\sqrt{3} \\ -2\sqrt{3} & -2 \end{pmatrix} \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix} = \begin{pmatrix} 8 & 0 \\ 0 & 8 \end{pmatrix} = 8\mathbf{I} *$ • $\mathbf{P}^3 = \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix} \begin{pmatrix} -2 & 2\sqrt{3} \\ -2\sqrt{3} & -2 \end{pmatrix} = \begin{pmatrix} 8 & 0 \\ 0 & 8 \end{pmatrix} = 8\mathbf{I} *$ (b) Note "original point" is not acceptable in place of the word "origin". Note "expand" is 1st M0 Note "enlarge x by 2 and no change in y" is 1^{st} M0 1^{st} A0 Writing "120 degrees" by itself implies by convention "120 degrees anti-clockwise". So Note • "Rotation 120 degrees about O" is 2nd M1 2nd A1 • "Rotation 120 degrees clockwise about O" is 2nd M1 2nd A0 Writing down "centre (0, 0) with scale factor 2" with no reference to "enlargement" Note or "enlarge" or "dilation" is 1st M0 1st A0 Writing down "120 degrees anti-clockwise about O" with no reference to "rotation" or "turn" Note is 2nd M0 2nd A0 Give 1st M1 1st A0 for writing "stretch parallel to x-axis and y-axis" Note Give 1st M1 1st A0 for writing "stretch scale factor 2 parallel to x-axis and stretch scale Note factor 2 parallel to y-axis {with centre (0, 0)}" If a candidate would score M1 A1 M1 A1 in part (b) and there is an error in their solution Note (e.g. a third transformation given) then give M1 A1 M1 A0 $8^{11} = 2^{33} = 8589934592$ (c) Note $8^{12} = 2^{36} = 68719476736$ Note (their P^2) must be a genuine attempt at P^2 or must be for (their P^2) seen in part (a) Note Allow M1 A1 for writing $\mathbf{P}^{35} = 2^{34} \begin{pmatrix} -1 & \sqrt{3} \\ -\sqrt{3} & -1 \end{pmatrix}$ Note Stating k = 34, $a = \sqrt{3}$, $b = -\sqrt{3}$ from no working is M1 A1 Note Give M0 A0 for $\mathbf{P}^4 = 2^3 \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix} \Rightarrow \mathbf{P}^{35} = 2^{34} \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix}$ Note

Past Paper (Mark Scheme)

www.mystudybro.com
This resource was created and owned by Pearson Edexcel

Past Paper (Ma	ark Scheme)	This resource was created and owned by Pearson Edexcel WFM01
		Question 7 Notes Continued
7. (c)	Note	Writing down $(8\mathbf{I})^{11} \times \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix} \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix}$ or $(2\mathbf{I})^{33} \times \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix} \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix}$
		or $(8\mathbf{I})^{11} \times \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix}^2$ or $(2\mathbf{I})^{33} \times \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix}^2$
		with no attempt to evaluate $\begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix} \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix}$ is M0
	Note	Allow M1 for applying $\mathbf{P}^{35} = (\mathbf{P}^3)^{11} \times \mathbf{P}^2$ or $\mathbf{P}^{35} = \mathbf{P}^{33} \times \mathbf{P}^2$
		E.g. Allow M1 for $\begin{pmatrix} 8 & 0 \\ 0 & 8 \end{pmatrix}^{11} \begin{pmatrix} -2 & 2\sqrt{3} \\ -2\sqrt{3} & -2 \end{pmatrix}$ or $\begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}^{33} \begin{pmatrix} -2 & 2\sqrt{3} \\ -2\sqrt{3} & -2 \end{pmatrix}$
		or $\begin{pmatrix} 8^{11} & 0 \\ 0 & 8^{11} \end{pmatrix} \begin{pmatrix} -2 & 2\sqrt{3} \\ -2\sqrt{3} & -2 \end{pmatrix}$ or $\begin{pmatrix} 2^{33} & 0 \\ 0 & 2^{33} \end{pmatrix} \begin{pmatrix} -2 & 2\sqrt{3} \\ -2\sqrt{3} & -2 \end{pmatrix}$
		or $(8)^{11} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} -2 & 2\sqrt{3} \\ -2\sqrt{3} & -2 \end{pmatrix}$ or $(2)^{33} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} -2 & 2\sqrt{3} \\ -2\sqrt{3} & -2 \end{pmatrix}$
	Note	Allow M1 for $(2)^{35}$ $\begin{pmatrix} \cos 240 & -\sin 240 \\ \sin 240 & \cos 240 \end{pmatrix}$ or $(2)^{35}$ $\begin{pmatrix} \cos 4200 & -\sin 4200 \\ \sin 4200 & \cos 4200 \end{pmatrix}$
		or $(2)^{35}$ $\begin{pmatrix} -0.5 & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -0.5 \end{pmatrix}$ or equivalent in radians
	Note	Give M0 for $\mathbf{P}^{35} = (\mathbf{P}^3)^{11} \times \mathbf{P}^2$ by itself
	Note	Give M0 for $\mathbf{P}^{35} = \mathbf{P}^{33} \times \mathbf{P}^2$ by itself

blank

Past Paper

8. (i) Prove by induction that, for $n \in \mathbb{Z}^+$

$$\begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix}^n = \begin{pmatrix} 1 + 4n & -8n \\ 2n & 1 - 4n \end{pmatrix}$$
 (5)

(ii) A sequence of positive numbers is defined by

$$u_1 = 8, \quad u_2 = 40$$

 $u_{n+2} = 8u_{n+1} - 12u_n \qquad n \geqslant 1$

Prove by induction that, for $n \in \mathbb{Z}^+$

$$u_n = 6^n + 2^n {(5)}$$

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Past Paper (IVI	This resource was	Treated and Own	ed by Pearson Ed	dexcei	VEIVIOT
Question Number	Scheme		Notes		Marks
8.	(i) $\begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix}^n = \begin{pmatrix} 1+4n & -8n \\ 2n & 1-4n \end{pmatrix}$ (ii) $u_1 = 8$		$= 40, u_{n+2} = 8u_{n+1}$	$-12u_n \Rightarrow u_n = 6^n + 2^n$	
(i)	(5 -8)			Shows or states that	
	$n = 1, \text{ LHS} = \begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix},$		eith	$\mathbf{ner} \ \mathbf{LHS} = \mathbf{RHS} = \begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix}$	B1
	RHS = $\begin{pmatrix} 1+4(1) & -8(1) \\ 2(1) & 1-4(1) \end{pmatrix}$ =		or LHS =	$ \begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix}, \text{ RHS} = \begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix} $	
	(Assume the result is true for $n = k$	•			
	$\begin{bmatrix} 5 & -8 \\ 2 & -3 \end{bmatrix}^{k+1} = \begin{pmatrix} 1+4k & -8k \\ 2k & 1-4k \end{pmatrix} \begin{pmatrix} 5 \\ 2 & 5 \end{pmatrix}$		$\begin{pmatrix} 1+4k \\ 2k \end{pmatrix}$	States intention to multiply $-8k \\ 1-4k$ by $\begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix}$ (either way round)	M1
	$\mathbf{or} = \begin{bmatrix} 2 & - \end{bmatrix}$	$3 \downarrow 2k \qquad 1-4k$	k	way round)	
				dependent on the	
	$= \begin{pmatrix} 5+20k-16k & -8-32k+24k \\ 10k+2-8k & -16k-3+12k \end{pmatrix}$			previous M mark	
			+4k $-8-8k$	Multiplies out to give a correct un-simplified	dM1
	or = $ \begin{pmatrix} 5 + 20k - 16k & -40k - 8 + \\ 2 + 8k - 6k & -16k - 3 + \end{pmatrix} $	$\begin{pmatrix} 12k \\ 12k \end{pmatrix}$ or $= \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}$	+2k $-4k-3$	matrix with at least 3 correct elements	
	$= \begin{pmatrix} 1+4(k+1) & -8(k+1) \\ 2(k+1) & 1-4(k+1) \end{pmatrix}$		Uses a	algebra to achieve this result with no errors	A1
	If the result is true for $n = k$, the	n it is true for $n =$	= k + 1. As the res	sult has been shown to be	A1
			cso		
		=			(5)
(ii)	${n=1,} u_1 = 6^1 + 2^1 = 8;$	Shows $u_1 = 8.1$	by writing an inte	rmediate step of e.g. $6^1 + 2^1$	
	$\{n=2,\}$ $u_2=6^2+2^2=40$	or $6+2$ and s	=	writing an intermediate step	B1
		1 7 1)	<u> </u>	of e.g. $6^2 + 2^2$ or $36 + 4$	
	(Assume the result is true for $n = k$		by attempting to	o substitute $u_{k+1} = 6^{k+1} + 2^{k+1}$	
	$\{u_{k+2} = 8u_{k+1} - 12u_k \Longrightarrow \}$	u_{k+2}		$2^{k} \text{ into } u_{k+2} = 8u_{k+1} - 12u_{k}$	M1
	$u_{k+2} = 8(6^{k+1} + 2^{k+1}) - 12(6^k + 2^k)$		and $u_k = 0$	Condone one slip	
	either $\{u_{k+2}\} = 48(6^k) + 16(2^k) - 12$	$2(6^k + 2^k)$		1	
	$= 36(6^k) + 4(2^k)$		Express	es u_{k+2} correctly in terms of	
	$= 6^2(6^k) + 2^2(2^k)$			only 6^k and 2^k	A 1
	or $\{u_{k+2}\} = 8(6^{k+1} + 2^{k+1}) - 2(6^k)$	$(k+1) - 6(2^{k+1})$		or only 6^{k+1} and 2^{k+1}	A1 (M1 on
	$=6(6^{k+1})+2(2^{k+1})$		or as $8(6^{k+1})$	$-2(6^{k+1})+4(2^{k+2})-3(2^{k+2})$	ePEN)
	or $\{u_{k+2}\} = 8(6^{k+1}) - 2(6^{k+1}) + 4$	$4(2^{k+2}) - 3(2^{k+2})$	or as $48(6^k)$	$-12(6^k) + 4(2^{k+2}) - 3(2^{k+2})$	
	or $\{u_{k+2}\} = 48(6^k) - 12(6^k) + 4$	$(2^{k+2})-3(2^{k+2})$			
	$= 6^{k+2} + 2^{k+2}$		Ûses al	nt on the previous A mark gebra in a complete method eve this result with no errors	A1
	If the result is true for $n = k$ and for $n = k + 1$, then it is true for $n = k + 2$.			A 1	
	As the result has	been shown to b	true for $n = 1$ a	nd n = 2,	A1 cso
	then t	he result <u>is true f</u>	For all $n \in \mathbb{Z}^+$		(5)
		<u> </u>	` ′		10

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

asi Paper (ivi	ark Scheme)	·			
		Question 8 Notes			
8. (i)	Note	Final A1 is dependent on all previous marks being scored.			
		It is gained by candidates conveying the ideas of all four underlined points in part (i)			
		either at the end of their solution or as a narrative in their solution.			
	Note	"Assume for $n = k$, $\begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix}^k = \begin{pmatrix} 1+4k & -8k \\ 2k & 1-4k \end{pmatrix}$ " satisfies the requirement "true for $n = k$ "			
	Note	"For $n \in \mathbb{Z}^+$, $\begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix}^n = \begin{pmatrix} 1+4n & -8n \\ 2n & 1-4n \end{pmatrix}$ " satisfies the requirement "true for all n "			
	Note	Give B0 for stating LHS = RHS by itself with no reference to LHS = RHS = $\begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix}$			
	Note	Allow for B1 for stating either, $n = 1$, $\begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix} = \begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix}$ or $\begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix} = \begin{pmatrix} 1+4 & -8 \\ 2 & 1-4 \end{pmatrix}$			
	Note	E.g. $ \begin{pmatrix} 1+4k & -8k \\ 2k & 1-4k \end{pmatrix} \begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix} = \begin{pmatrix} 1+4(k+1) & -8(k+1) \\ 2(k+1) & 1-4(k+1) \end{pmatrix} $ with no intermediate working			
		is M1 dM0 A0 A0			
	Note	E.g. Writing any of			
		is M1 dM1 A1			
(ii)	Note	Ignore $u_3 = 8u_2 - 12u_1 = 8(40) - 12(8) = 224$ as part of their solution to (i)			
, ,	Note	Ignore $\{n=3,\}$ $u_2=6^3+2^3=224$ as part of their solution to (i)			
	Note	Full marks in (i) can be obtained for an equivalent proof where $n = k \rightarrow n = k - 1$; i.e. $k \equiv k - 1$			
	Note	Final A1 is dependent on all previous marks being scored.			
		It is gained by candidates conveying the ideas of all four underlined points in part (ii)			
		either at the end of their solution or as a narrative in their solution.			
	Note	"Assume for $n = k$, $u_k = 6^k + 2^k$ and for $n = k + 1$, $u_{k+1} = 6^{k+1} + 2^{k+1}$ " satisfies the requirement			
		"true for $n = k$ and $n = k + 1$ "			
	Note	"For $n \in \mathbb{Z}^+$, $u_n = 6^n + 2^n$ " satisfies the requirement "true for all n "			
	Note	Writing $u_{k+2} = 8(6^{k+1} + 2^{k+1}) - 12(6^k + 2^k) = 6^{k+2} + 2^{k+2}$ with no intermediate working			
		is M1 A0 A0 A0			
	Note	E.g. Writing either			
		• $u_{k+2} = 8(6^{k+1} + 2^{k+1}) - 12(6^k + 2^k) = 48(6^k) + 16(2^k) - 12(6^k + 2^k) = 6^{k+2} + 2^{k+2}$			
		• $u_{k+2} = 8(6^{k+1} + 2^{k+1}) - 12(6^k + 2^k) = 36(6^k) + 4(2^k) = 6^{k+2} + 2^{k+2}$			
		• $u_{k+2} = 8(6^{k+1} + 2^{k+1}) - 12(6^k + 2^k) = 6^2(6^k) + 2^2(2^k) = 6^{k+2} + 2^{k+2}$			
		• $u_{k+2} = 8(6^{k+1} + 2^{k+1}) - 12(6^k + 2^k) = 8(6^{k+1} + 2^{k+1}) - 2(6^{k+1}) - 6(2^{k+1}) = 6^{k+2} + 2^{k+2}$			
		• $u_{k+2} = 8(6^{k+1} + 2^{k+1}) - 12(6^k + 2^k) = 6(6^{k+1}) + 2(2^{k+1}) = 6^{k+2} + 2^{k+2}$			
		• $u_{k+2} = 8(6^{k+1} + 2^{k+1}) - 12(6^k + 2^k) = 8(6^{k+1}) - 2(6^{k+1}) + 4(2^{k+2}) - 3(2^{k+2}) = 6^{k+2} + 2^{k+2}$			
		• $u_{k+2} = 8(6^{k+1} + 2^{k+1}) - 12(6^k + 2^k) = (6)(6^{k+1}) + 4(2^{k+2}) - 3(2^{k+2}) = 6^{k+2} + 2^{k+2}$			
		is M1 A1 A1			
	Note	Writing $u_{k+2} = 8(6^{k+1} + 2^{k+1}) - 12(6^k + 2^k) = (6)6^{k+1} + 2^{k+2} = 6^{k+2} + 2^{k+2}$			
		with no intermediate working is M1 A0 A0 A0			

Winter 2019

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Mathematics F1

	Question 8 Notes Continued		
8. (ii)	Note Full marks in (i) can be obtained for an equivalent proof where e.g.		
		• $n = k, n = k + 1, \rightarrow n = k - 2, n = k - 1$; i.e. $k \equiv k - 2$	
8. (i), (ii)	Note	Referring to <i>n</i> as a real number their conclusion is final A0	
	Note	Ote Referring to <i>n</i> as any integer in their conclusion is final A0	
	Note	Note Condone $n \in \mathbb{Z}^*$ as part of their conclusion for the final A1	

blank

DO NOT WRITE IN THIS AREA

Leave

The complex numbers z_1 and z_2 are given by

$$z_1 = -1 - i$$
 and $z_2 = 3 - 4i$

(a) Find the argument of the complex number $z_1 - z_2$. Give your answer in radians to 3 decimal places.

(3)

(b) Find the complex number $\frac{z_1}{z_2}$ in the form a + ib, where a and b are rational numbers.

(3)

(c) Find the modulus of $\frac{z_1}{z_2}$, giving your answer as a simplified surd.

(2)

(d) Find the values of the real constants p and q such that

$$\frac{p + iq - 8z_1}{p - iq - 8z_2} = 3i$$

(5)

Winter 2019 www.mystudybro.com **Mathematics F1** This resource was created and owned by Pearson Edexcel Past Paper (Mark Scheme) WFM01 **Question** Scheme Notes Marks Number $z_1 = -1 - i$, $z_2 = 3 - 4i$; (d) $\frac{p + iq - 8z_1}{p - iq - 8z_2} = 3i$ 9. $\frac{z_1 - z_2 = -4 + 3i}{\{z_1 - z_2 = -4 + 3i \Rightarrow \}}$ $z_1 - z_2 = -4 + 3i$, seen or implied B1 (a) $z_1 - z_2 = \alpha + \beta i; \alpha < 0, \beta > 0$ and uses trigonometry to find an expression for $\arg(z_1 - z_2) = \pi - \tan^{-1}(\frac{3}{4})$ $arg(z_1 - z_2)$ so that $arg(z_1 - z_2)$ is in the range M1 (1.58..., 3.14...) or (90°, 180°) or (-3.15..., -4.71...) or $(-180^{\circ}, -270^{\circ})$ $\{\arg(z_1 - z_2) = \pi - 0.6435011... \Rightarrow \}$ $arg(z_1 - z_2) = 2.4980915... \{= 2.498 (3 dp)\}$ awrt 2.498 **A**1 **(3)** Multiplies numerator and denominator (b) M1by the conjugate of the denominator Way 1 $= \frac{-3 - 4i - 3i + 4}{9 + 16} \quad \left\{ = \frac{1 - 7i}{25} \right\}$ Numerator correct (with $i^2 = -1$ applied) A 1 or denominator correct (with $i^2 = -1$ applied) $=\frac{1}{25}-\frac{7}{25}i$ or 0.04-0.28i $\frac{1}{25} - \frac{7}{25}i$ or 0.04 - 0.28i**A**1 **(3)** (b) $\frac{-1-i}{3-4i} = a + ib \implies -1-i = (a+ib)(3-4i)$ Sets $\frac{z_1}{z_2} = a + ib$, multiplies both sides by z_2 , Way 2 $\{\text{Real} \Rightarrow \} -1 = 3a + 4b$ attempts to equate both the real part and the M1 {Imaginary \Rightarrow } -1 = -4a + 3bimaginary part of the resulting equation and solves to give at least one of a = ... or b = ... $a = \frac{1}{25} \text{ or } 0.04 \text{ , } b = -\frac{7}{25} \text{ or } -0.28$ So, $\frac{z_1}{z_2} = \frac{1}{25} - \frac{7}{25}i$ or 0.04 - 0.28iAt least one of either a or b is correct A1 $\frac{1}{25} - \frac{7}{25}i$ or 0.04 - 0.28i**A**1 **(3)**

(c)	$\left\{ \left \frac{z_1}{z_2} \right = \right\} \sqrt{\left(\frac{1}{25}\right)^2 + \left(\frac{-7}{25}\right)^2} \left\{ \mathbf{or} \frac{ z_1 }{ z_2 } = \right\} \frac{\sqrt{(-1)^2}}{\sqrt{(3)^2}} $	Finds $\left \frac{z_1}{z_2} \right $ by applying a full Pythagoras method	M1
	$\left\{ = \frac{\sqrt{50}}{25} \right\} = \frac{\sqrt{2}}{5}$	$\frac{\sqrt{2}}{5} \text{ or } \frac{1}{5}\sqrt{2}$	A1 cao

Multiplies both sides by only $(p-iq-8z_2)$,

and substitutes the given values for z_1 and z_2

(2)

M1

$\Rightarrow p + iq + 8 + 8i = 3pi + 3q - 72i - 96$ $\{\text{Real} \Rightarrow\} p + 8 = 3q - 96$	dependent on the previous M mark attempts to equate both the real part and the imaginary part of the resulting equation	dM1
{Imaginary \Rightarrow } $q+8=3p-72$	Both correct equations which can be simplified or un-simplified	A1
$\begin{cases} p - 3q = -104 \\ 3p - q = 80 \end{cases} \Rightarrow \begin{cases} p - 3q = -104 \\ 9p - 3q = 240 \end{cases}$	Obtains two equations both in terms of p and q and solves them simultaneously to give at least one of $p = \dots$ or $q = \dots$	ddM1
$\Rightarrow p = 43, q = 49$	p = 43, q = 49	A1

 $p + iq - 8z_1 = 3i(p - iq - 8z_2)$

 $\Rightarrow p + iq - 8(-1 - i) = 3i(p - iq - 8(3 - 4i))$

(d)

Winter 2019

Mathematics F1

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

		Question 9 Notes		
9. (a)	Note	Allow M1 (implied) for awrt 2.5, truncated 2.4, awrt -3.8, truncated -3.7, awrt 143°,		
		awrt -217° or truncated -216°		
	Note	Give B1 M1 A1 for writing $arg(z_1 - z_2) = awrt 2.498$ from no working.		
(b)	Note Give 2 nd A0 for writing down $\frac{1-7i}{25}$ with no reference to $\frac{1}{25} - \frac{7}{25}i$ or $0.04 - 0.2i$			
	Note	Give M1 1 st A1 for writing down $\frac{1-7i}{25}$ from no working in (b)		
	Note	Give M1 A1 A1 for writing down $\frac{1-7i}{25} = \frac{1}{25} - \frac{7}{25}i$ or $0.04 - 0.28i$ from no working in (b)		
	Note	Give M1 A1 A1 for writing down $\frac{1}{25} - \frac{7}{25}i$ or $0.04 - 0.28i$ from no working in (b)		
	Note	Give 2^{nd} A0 for simplifying a correct $\frac{1}{25} - \frac{7}{25}i$ to give a final answer of $1-7i$		
(c)	Note	M1 can be implied by awrt 0.283 or truncated 0.282		
	Note	Give A0 for $\frac{\sqrt{50}}{25}$ or 0.28284 without reference to $\frac{\sqrt{2}}{5}$ or $\frac{1}{5}\sqrt{2}$		
	Note	Give M0 for $\sqrt{\left(\frac{1}{25}\right)^2 + \left(\frac{-7i}{25}\right)^2}$ unless recovered by later working		
	Note	Give M1 A1 for writing $\left \frac{z_1}{z_2} \right = \frac{\sqrt{2}}{5}$ from no working.		