Mathematics F2

Past Paper

This resource was created and owned by Pearson Edexcel

WFM02

Write your name here Surname	Other nar	mes
Pearson Edexcel International Advanced Level	Centre Number	Candidate Number
Further Pu	ıre	`
Mathemat Advanced/Advanced		
	d Subsidiary	Paper Reference WFM02/01

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B). Coloured pencils and highlighter pens must not be used.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information

- The total mark for this paper is 75.
- The marks for each question are shown in brackets
 use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

PEARSON

Turn over ▶

Mathematics F2

■ Past Paper

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Leave	
hlank	

$\frac{x}{x+2} < \frac{2}{x+5}$	
x+2 $x+5$	
	(7)

Past Paper (Mark Scheme)

WFM02

Mathematics F2

WFM02 Further Pure Mathematics F2 Mark Scheme

Question Number	Scheme		Notes	Marks
1.	<u>x</u>	$-<\frac{2}{r+5}$		
	x+2	x+5		
	Critical Values -2 and -5	•	ere in solution B1B1; one correct B1B0	B1, B1
	$\frac{x}{x+2} - \frac{2}{x+5} < 0$			
	$\frac{x^2 + 3x - 4}{(x+2)(x+5)} < 0$			
	$\frac{(x+4)(x-1)}{(x+2)(x+5)} < 0$		le fraction and factorise use quad formula	M1
	Critical values -4 and 1	Correct critic graph or num	cal values May be seen on a aber line.	A1
		1	ot an interval inequality using -5 with another cv	
	-5 < x < -4, -2 < x < 1 $(-5, -4) \cup (-2, 1)$	Can be in set One correct s	notation	dM1A1,A1
		ignore any ar Set notation a	sis of the inequalities seen - nd/or between them answers do not need the union	
		sign.		(7)
ALT	Critical Values -2 and -5	Seen anywhe	ere in solution	B1, B1
	$\frac{x}{x+2} < \frac{2}{x+5} \Rightarrow x(x+5)^2(x+2) < 2(x+5)^2(x+5) = (x+5)(x+2) \left[x(x+5) - 2(x+5)\right]$	·	No in goldion	31, 31
	$\Rightarrow (x+5)(x+2)[x(x+5)-2(x+3)]$	2)] < 0		
	$\Rightarrow (x+5)(x+2)[(x-1)(x+4)]$		Multiply by $(x+5)^2(x+2)^2$ and attempt to factorise a quartic or use quad formula	M1
	Critical values -4 and 1		Correct critical values	A1
	$-5 < x < -4, -2 < x < 1$ $(-5, -4) \cup (-2, 1)$		dM1: Attempt an interval inequality using one of -2 or -5 with another cv A1, A1: Correct intervals Can be in set notation One correct scores A1A0	dM1A1,A1
				(7)

Any solutions with no algebra (eg sketch graph followed by critical values with no working) scores max B1B1

■ Past Paper

This resource was created and owned by Pearson Edexcel

WFM02 Leave

blank

2. (a) Express $\frac{1}{(r+6)(r+8)}$ in partial fractions.

(1)

(b) Hence show that

$$\sum_{r=1}^{n} \frac{2}{(r+6)(r+8)} = \frac{n(an+b)}{56(n+7)(n+8)}$$

where a and b are integers to be found.

(4)

Sullille	ZU15 www.iiiyStut	aybro.com mame	illatics rz
ऐक्स्रिक्त Number	(Mark Scheme) This resource was created and Scheme	owned by Pearson Edexcel Notes	WFM02 Marks
	$\frac{1}{(r+6)(r}$	+8)	
2(a)	$\frac{1}{2(r+6)} - \frac{1}{2(r+8)}$ oe	Correct partial fractions, any equivalent form	B1
			(1)
(b)	$= \left(2 \times \frac{1}{2}\right) \left(\frac{1}{7} - \frac{1}{9} + \frac{1}{8} - \frac{1}{10} + \frac{1}{9} - \frac{1}{11} \dots \right)$ Expands at least 3 terms at start at The partial fractions obtained in (a) can Fractions may be $\frac{1}{2} \times \frac{1}{7} - \frac{1}{2} \times \frac{1}{9} \text{ etc These}$	nd 2 at end (may be implied) be used without multiplying by 2.	M1
	$= \frac{1}{7} + \frac{1}{8} - \frac{1}{n+7} - \frac{1}{n+8}$	Identifies the terms that do not cancel	A1
	$= \frac{15(n+7)(n+8)-56(2n+15)}{56(n+7)(n+8)}$	Attempt common denominator Must have multiplied the fractions from (a) by 2 now	M1
	$=\frac{n(15n+113)}{56(n+7)(n+8)}$		A1cso
			(4)
			Total 5

Mathematics F2

■ Past Paper

This resource was created and owned by Pearson Edexcel

WFM02 Leave

blank

(a) Show that the substitution $z = y^{-2}$ transforms the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} + 2xy = x\mathrm{e}^{-x^2}y^3 \quad (\mathrm{I})$$

into the differential equation

$$\frac{\mathrm{d}z}{\mathrm{d}x} - 4xz = -2x\mathrm{e}^{-x^2} \quad \text{(II)}$$

(b) Solve differential equation (II) to find z as a function of x.

(5)

(c) Hence find the general solution of differential equation (I), giving your answer in the form $y^2 = f(x)$.

(1)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Mathematics F	2
---------------	---

Question Number	Scheme	Notes	Marks
3	$\frac{\mathrm{d}y}{\mathrm{d}x} + 2xy =$	$xe^{-x^2}y^3$	
(a)	$z = y^{-2} \Rightarrow y = z^{-\frac{1}{2}}$		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{1}{2}z^{-\frac{3}{2}}\frac{\mathrm{d}z}{\mathrm{d}x}$	M1: $\frac{dy}{dx} = kz^{-\frac{3}{2}} \frac{dz}{dx}$ A1: Correct differentiation	- M1A1
	$-\frac{1}{2}z^{-\frac{3}{2}}\frac{dz}{dx} + \frac{2x}{z^{\frac{1}{2}}} = xe^{-x^2}z^{-\frac{3}{2}}$	Substitutes for dy/dx	M1
	$\frac{\mathrm{d}z}{\mathrm{d}x} - 4xz = -2x\mathrm{e}^{-x^2} *$	Correct completion to printed answer with no errors seen	Alcso
			(4)
	(a) Alter	rnative 1	
	$\frac{\mathrm{d}z}{\mathrm{d}y} = -2y^{-3} \text{oe}$	$M1: \frac{\mathrm{d}z}{\mathrm{d}y} = ky^{-3}$	M1A1
	$-\frac{1}{2}y^{3}\frac{dz}{dx} + 2xy = xe^{-x^{2}}y^{3}$	A1: Correct differentiation Substitutes for dy/dx	M1
	$\frac{dz}{dx} - 4xz = -2xe^{-x^2} + \frac{dz}{dx}$	Correct completion to printed answer with no errors seen	A1
	(a) Alter	rnative 2	
	$\frac{\mathrm{d}z}{\mathrm{d}x} = -2y^{-3} \frac{\mathrm{d}y}{\mathrm{d}x}$	M1: $\frac{dz}{dx} = ky^{-3} \frac{dy}{dx}$ inc chain rule A1: Correct differentiation	M1A1
	$-\frac{1}{2}y^{3}\frac{dz}{dx} + 2xy = xe^{-x^{2}}y^{3}$	Substitutes for dy/dx	M1
	$\frac{\mathrm{d}z}{\mathrm{d}x} - 4xz = -2x\mathrm{e}^{-x^2} *$	Correct completion to printed answer with no errors seen	A1
(b)	$I = e^{\int -4x dx} = e^{-2x^2}$	$M1: I = e^{\int \pm 4x dx}$ $A1: e^{-2x^2}$	M1A1
	$ze^{-2x^2} = \int -2xe^{-3x^2} dx$	$z \times I = \int -2x e^{-x^2} I dx$	dM1
	$\frac{1}{3}e^{-3x^2}(+c)$ $z = ce^{2x^2} + \frac{1}{3}e^{-x^2}$	$\int x e^{qx^2} dx = p e^{qx^2} (+c)$	M1
	$z = ce^{2x^2} + \frac{1}{3}e^{-x^2}$	Or equivalent	A1
			(5)
(c)	$\frac{1}{y^2} = ce^{2x^2} + \frac{1}{3}e^{-x^2} \Rightarrow y^2 = \frac{1}{ce^{2x^2} + \frac{1}{3}e^{-x^2}}$	$y^{2} = \frac{1}{(b)} \left(= \frac{3e^{x^{2}}}{1 + ke^{3x^{2}}} \right)$	B1ft
			(1)
			Total 10

Mathematics F2

■ Past Paper

This resource was created and owned by Pearson Edexcel

WFM02

Leave blank

4. A transformation T from the z-plane to the w-plane is given by

$$w = \frac{z-1}{z+1}, \quad z \neq -1$$

The line in the z-plane with equation y = 2x is mapped by T onto the curve C in the w-plane.

(a) Show that C is a circle and find its centre and radius.

(7)

The region y < 2x in the z-plane is mapped by T onto the region R in the w-plane.

(b) Sketch circle C on an Argand diagram and shade and label region R.

(2)

			matics F2	
Q ætstæmr Number	(Mark Scheme) This resource was created an Scheme	nd dwned by Pearson Edexcel Notes	WFM02 Marks	
	$w = \frac{z}{z}$	<u>-1</u> +1		
4 (a)	$w = \frac{z - 1}{z + 1} \Rightarrow wz + w = z - 1 \Rightarrow z = \dots$	Attempt to make z the subject	M1	
	$z = \frac{w+1}{1-w}$	Correct expression in terms of w	A1	
	$= \frac{u+iv+1}{1-u-iv} \times \frac{1-u+iv}{1-u+iv}$	Introduces " $u + iv$ " and multiplies top and bottom by the complex conjugate of the bottom	M1	
	$x = \frac{-u^2 - v^2 + 1}{2}, y = \frac{2v}{2}$			
	$y = 2x \Rightarrow 2v = -2u^2 - 2v^2 + 2$	Uses real and imaginary parts and $y = 2x$ to obtain an equation connecting " u " and " v " Can have the 2 on the wrong side.	M1	
	$u^2 + \left(v + \frac{1}{2}\right)^2 - \frac{1}{4} = 1$	Processes their equation to a form that is recognisable as a circle ie coefficients of u^2 and v^2 are the same and no uv terms	M1	
	Centre $(0, -\frac{1}{2})$, radius $\frac{\sqrt{5}}{2}$	A1: Correct centre (allow -½i) A1: Correct radius	A1,A1	
	2		(7)	
	Special	Case:		
	$w = \frac{x + iy - 1}{x + iy + 1} = \frac{(x - 1) + 2xi}{(x + 1) + 2xi} \times \frac{(x + 1) - 2xi}{(x + 1) - 2xi}$	M1: rationalise the denominator, may have 2x or y		
	$= \frac{\left(x^2 - 1\right) + 4x^2 + 2xi\left(x + 1 - \left(x - 1\right)\right)}{\left(x + 1\right)^2 + 4x^2}$	A1: Correct result in terms of <i>x</i> only. Must have rational denominator shown, but no other simplification needed		
(b)		B1ft: Their circle correctly positioned provided their equation does give a circle		
	R	B1: Completely correct sketch and shading	B1ft B1	
			(2)	
			Total 9	

■ Past Paper

This resource was created and owned by Pearson Edexcel

WFM02 Leave

blank

- 5. Given that $y = \cot x$,
 - (a) show that

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 2\cot x + 2\cot^3 x \tag{3}$$

(b) Hence show that

$$\frac{\mathrm{d}^3 y}{\mathrm{d}x^3} = p \cot^4 x + q \cot^2 x + r$$

where p, q and r are integers to be found.

(3)

(c) Find the Taylor series expansion of cot x in ascending powers of $\left(x - \frac{\pi}{3}\right)$ up to and including the term in $\left(x - \frac{\pi}{3}\right)^3$.

(3)

Sum	mer	201	5
Juli		2 0 i	J

Mathematics F2

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question	Scheme	Notes	1
Number	Scheme	Hotes	Marks
5	$y = \cot x$		
(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\mathrm{cosec}^2 x$		
	$\frac{d^2y}{dx^2} = (-2\csc x)(-\csc x \cot x)$	M1: Differentiates using the chain rule or product/quotient rule	M1A1
	dx^2	A1: Correct derivative	
	$= 2\operatorname{cosec}^2 x \cot x = 2\cot x + 2\cot^3 x^*$	A1: Correct completion to printed answer $1 + \cot^2 x = \csc^2 x$ or $\cos^2 x + \sin^2 x = 1$ must be used Full working must be shown	A1cso*
			(3)
		rnative:	
	$y = \frac{\cos x}{\sin x} \rightarrow \frac{dy}{dx} = \frac{-\sin x}{\sin x}$	$\frac{\sin^2 x - \cos^2 x}{\sin^2 x} = -\frac{1}{\sin^2 x}$	
	u.i	$\sin^{-3}x\cos x\Big) = \dots$	M1A1
	A1: Correct completion to	o printed answer see above	A1
(b)	$\frac{\mathrm{d}^3 y}{\mathrm{d}x^3} = -2\mathrm{cosec}^2 x - 6\cot^2 x \mathrm{cosec}^2 x$	Correct third derivative	B1
	$= -2(1+\cot^2 x) - 6\cot^2 x(1+\cot^2 x)$	Uses $1 + \cot^2 x = \csc^2 x$	M1
	$=-6\cot^4 x - 8\cot^2 x - 2$	cso	A1 (2)
(c)	$f\left(\frac{\pi}{3}\right) = \frac{1}{\sqrt{3}}, f'\left(\frac{\pi}{3}\right) = -\frac{4}{3}, f'\left(\frac{\pi}{3}\right) =$	$f''\left(\frac{\pi}{3}\right) = \frac{8}{3\sqrt{3}}, f'''\left(\frac{\pi}{3}\right) = -\frac{16}{3}$	(3) M1
	M1: Attempts all 4 values at	$\frac{\pi}{3}$ No working need be shown	
	M1: Correct application of Taylor using	$\frac{4}{3\sqrt{3}} \left(x - \frac{\pi}{3} \right)^2 - \frac{8}{9} \left(x - \frac{\pi}{3} \right)^3$ Is their values. Must be up to and including $\left(-\frac{\pi}{3} \right)^3$	M1A1
		3)	WIIAI
	_	Must start $y =$ or $\cot x$	
	f(x) allowed provided defined here or above as $f(x) = \cot x$ or y Decimal equivalents allowed (min 3 sf apart from 0.77), 0.578, 1.33, 0.770, (0.7698, so accept 0.77) 0.889		
	(3.7.37511, 35 4666)		
			(3) Total 9
	<u>I</u>	1	<u> </u>

■ Past Paper

This resource was created and owned by Pearson Edexcel

WFM02

Leave blank

6. (a) Find the general solution of the differential equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - 2\frac{\mathrm{d}y}{\mathrm{d}x} - 3y = 2\sin x \quad (I)$$

(8)

Given that y = 0 and $\frac{dy}{dx} = 1$ when x = 0

(b) find the particular solution of differential equation (I).

(5)

Summer	2015
Julillei	ZUIJ

Mathematics F2

Past Paper (M	Mark Scheme) This resource was created a	nd owned by Pearson Edexcel	WFM02
Question Number	Scheme	Notes	Marks
6(a)	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - 2\frac{\mathrm{d}y}{\mathrm{d}x} - 3\frac{\mathrm{d}y}{\mathrm{d}x} - 3\frac{\mathrm{d}$	$3y = 2\sin x$	
	AE: $m^2 - 2m - 3 = 0$		
	$m^2 - 2m - 3 = 0 \Rightarrow m =(-1,3)$	Forms Auxiliary Equation and attempts to solve (usual rules)	M1
	$(y =) A e^{3x} + B e^{-x}$	Cao	A1
	PI: $(y =) p \sin x + q \cos x$	Correct form for PI	B1
	$(y' =) p \cos x - q \sin x$ $(y'' =) - p \sin x - q \cos x$		
	$-p\sin x - q\cos x - 2(p\cos x - q\sin x)$ Differentiates twice	,	M1
	2q-4p=2, $4q+2p=0$	Correct equations	A1
	$p = -\frac{2}{5}, \ q = \frac{1}{5}$	A1A1 both correct A1A0 one correct	A1A1
	$y = \frac{1}{5}\cos x - \frac{2}{5}\sin x$		
	$y = \frac{1}{5}\cos x - \frac{2}{5}\sin x$ $y = Ae^{3x} + Be^{-x} + \frac{1}{5}\cos x - \frac{2}{5}\sin x$	Follow through their p and q and their CF	B1ft
			(
(b)	$y' = 3Ae^{3x} - Be^{-x} - \frac{1}{5}\sin x - \frac{2}{5}\cos x$	Differentiates their GS	M1
	$0 = A + B + \frac{1}{5}, \ 1 = 3A - B - \frac{2}{5}$	M1: Uses the given conditions to give two equations in A and B A1: Correct equations	M1A1
	$A = \frac{3}{10}, B = -\frac{1}{2}$	Solves for A and B Both correct	A1
	$A = \frac{3}{10}, B = -\frac{1}{2}$ $y = \frac{3}{10}e^{3x} - \frac{1}{2}e^{-x} + \frac{1}{5}\cos x - \frac{2}{5}\sin x$	Sub their values of A and B in their GS	A1ft
			Total 13

WFM02 Leave

blank

7.

Past Paper

This resource was created and owned by Pearson Edexcel

Figure 1

Figure 1 shows the two curves given by the polar equations

$$r = \sqrt{3} \sin \theta$$
, $0 \le \theta \le \pi$
 $r = 1 + \cos \theta$, $0 \le \theta \le \pi$

(a) Verify that the curves intersect at the point P with polar coordinates $\left(\frac{3}{2}, \frac{\pi}{3}\right)$.

The region *R*, bounded by the two curves, is shown shaded in Figure 1.

(b) Use calculus to find the exact area of R, giving your answer in the form $a(\pi - \sqrt{3})$, where a is a constant to be found.

(6)

Mathematics F2

Summer 2015 www.mystudybro.com
Past Paper (Mark Scheme) This resource was created and owned by Pearson Edexcel

Question Number	Scheme	Notes	Marks	
7(a)	$\theta = \frac{\pi}{3} \Rightarrow r = \sqrt{3} \sin\left(\frac{\pi}{3}\right) = \frac{3}{2}$	Attempt to verify coordinates in at least one of the polar equations	M1	
	$\theta = \frac{\pi}{3} \Rightarrow r = 1 + \cos\left(\frac{\pi}{3}\right) = \frac{3}{2}$	Coordinates verified in both curves (Coordinate brackets not needed)	A1	
			(2)	
	Alternat	tive:		
	Equate $rs: \sqrt{3} \sin \theta = 1 + \cos \theta$ and verify (by or solve by using $t = \tan \frac{\theta}{2}$	substitution) that $\theta = \frac{\pi}{3}$ is a solution	MI	
	or writing $\frac{\sqrt{3}}{2}\sin\theta - \frac{1}{2}\cos\theta = \frac{1}{2}$ $\sin\left(\theta - \frac{\pi}{6}\right)$	$\theta = \frac{1}{2} \qquad \theta = \frac{\pi}{3}$	M1	
	Squaring the original equation allowed as θ is	s known to be between 0 and π		
	Use $\theta = \frac{\pi}{3}$ in either equation to obtain $r = \frac{3}{2}$		A1	
(b)	$\frac{1}{2} \int (\sqrt{3} \sin \theta)^2 d\theta, \frac{1}{2} \int (1 + \cos \theta)^2 d\theta$	Correct formula used on at least one curve (1/2 may appear later) Integrals may be separate or added or subtracted.	M1	
	$= \frac{1}{2} \int 3\sin^2\theta d\theta, \frac{1}{2} \int (1 + 2\cos\theta + \cos^2\theta) d\theta$			
	$= \left(\frac{1}{2}\right) \int \frac{3}{2} (1 - \cos 2\theta) d\theta, \left(\frac{1}{2}\right) \int (1 + 2\cos \theta + \frac{1}{2} (1 + \cos 2\theta)) d\theta$			
	Attempt to use $\sin^2 \theta$ or $\cos^2 \theta = \pm \frac{1}{2} \pm \frac{1}{2} \cos 2\theta$ on either integral			
	Not dependent 1/2 may be missing			
	$= \frac{3}{4} \left[\theta - \frac{1}{2} \sin 2\theta \right]_{(0)}^{\left(\frac{\pi}{3}\right)}, \frac{1}{2} \left[\frac{3}{2} \theta + 2 \sin \theta + \frac{1}{4} \sin 2\theta \right]_{\left(\frac{\pi}{3}\right)}^{(\pi)}$			
	Correct integration (ignore limits) A1A1 or A1A0			
	$R = \frac{3}{4} \left[\frac{\pi}{3} - \frac{\sqrt{3}}{4} (-0) \right] + \frac{1}{2} \left[\frac{3\pi}{2} - \left(\frac{\pi}{2} + \sqrt{3} + \frac{\sqrt{3}}{8} \right) \right]$	Correct use of limits for both integrals Integrals must be added. Dep on both previous M marks	dd M1	
	$=\frac{3}{4}\left(\pi-\sqrt{3}\right)$	Cao No equivalents allowed	A1	
			(6)	
			Total 8	

Past Paper

This resource was created and owned by Pearson Edexcel

WFM02

Leave blank

8. (a) Show that

$$\left(z + \frac{1}{z}\right)^3 \left(z - \frac{1}{z}\right)^3 = z^6 - \frac{1}{z^6} - k\left(z^2 - \frac{1}{z^2}\right)$$

where k is a constant to be found.

(3)

Given that $z = \cos \theta + i \sin \theta$, where θ is real,

(b) show that

$$(i) \quad z^n + \frac{1}{z^n} = 2\cos n\theta$$

(ii)
$$z^n - \frac{1}{z^n} = 2i\sin n\theta$$

(3)

(c) Hence show that

$$\cos^3\theta \sin^3\theta = \frac{1}{32} (3\sin 2\theta - \sin 6\theta)$$
 (4)

(d) Find the exact value of

$$\int_0^{\frac{\pi}{8}} \cos^3 \theta \, \sin^3 \theta \, \mathrm{d}\theta \tag{4}$$

Sum		204	E
Sum	mer	Z U1	Э

	Mark Scheme) This resource was created and qu		arson Edexcel	WFM02
Question Number	Scheme		Notes	Marks
8(a)	$\left(z + \frac{1}{z}\right)^3 \left(z - \frac{1}{z}\right)^3 = \left(z^2 - \frac{1}{z^2}\right)^3$ $= z^6 - 3z^2 + \frac{3}{z^2} - z^{-6}$			
			npt to expand	M1A1
	$= z^6 - \frac{1}{z^6} - 3\left(z^2 - \frac{1}{z^2}\right)$		swer with no errors seen	A1
				(3)
(a) ALT	$\left(z + \frac{1}{z}\right)^3 = z^3 + 3z + \frac{3}{z} + \frac{1}{z^3}, \left(z - \frac{1}{z^3}\right)^3 = z^3 + 3z + \frac{3}{z^3} + \frac{1}{z^3}$	$-\frac{1}{z}\bigg)^3 = z^3$	$-3z + \frac{3}{z} - \frac{1}{z^3}$	M1A1
	M1: Attempt to expand both cubic bra	ckets A1:	Correct expansions	
	$= z^6 - \frac{1}{z^6} - 3\left(z^2 - \frac{1}{z^2}\right)$	Correct a	answer with no errors	A1
				(3)
(b)(i)(ii)	$z^n = \cos n\theta + i\sin n\theta$	+	application of de Moivre	B1
	$z^{-n} = \cos(-n\theta) + i\sin(-n\theta) = \pm \cos n\theta \pm \sin n\theta$ but must be different from their z^n	Attempt	Z ⁻ⁿ	M1
	$z^{n} + \frac{1}{z^{n}} = 2\cos n\theta^{*}, \ z^{n} - \frac{1}{z^{n}} = 2i\sin n\theta^{*}$	$z^{-n} = \cos$	$\sin \theta - i \sin n\theta$ must be seen	A1*
				(3)
(c)	$\left(z + \frac{1}{z}\right)^3 \left(z - \frac{1}{z}\right)^3 = \left(2\cos\theta\right)^3 \left(2i\sin\theta\right)^3$			B1
	$z^{6} - \frac{1}{z^{6}} - 3\left(z^{2} - \frac{1}{z^{2}}\right) = 2i\sin 6\theta - 6i\sin 2\theta$	Follow th	brough their k in place of 3	B1ft
	$-64i\sin^3\theta\cos^3\theta = 2i\sin6\theta - 6i\sin2\theta$	1 1	right hand sides and	M1
			ng $2^3 \times (2i)^3$ (B mark	
		needed for mark)	or each side to gain M	
	$\cos^3\theta\sin^3\theta = \frac{1}{32}(3\sin 2\theta - \sin 6\theta) *$			A1cso
				(4)
(d)	$\int_0^{\frac{\pi}{8}} \cos^3 \theta \sin^3 \theta d\theta = \int_0^{\frac{\pi}{8}} \frac{1}{32} (1 + \frac{\pi}{8})^{\frac{\pi}{8}} d\theta$	$(3\sin 2\theta -$	$\sin 6\theta$) d θ	
	$= \frac{1}{32} \left[-\frac{3}{2} \cos 2\theta + \frac{1}{6} \cos 6\theta \right]_0^{\frac{\pi}{8}}$		M1: $p \cos 2\theta + q \cos 6\theta$ A1: Correct integration Differentiation scores M0A0	M1A1
	$= \frac{1}{32} \left[\left(-\frac{3}{2\sqrt{2}} - \frac{1}{6\sqrt{2}} \right) - \left(-\frac{3}{2} + \frac{1}{6} \right) \right] = \frac{1}{32} \left(\frac{4}{3} \right)$	$-\frac{5\sqrt{2}}{6}$	dM1: Correct use of limits – lower limit to have non-zero result. Dep on previous M mark A1: Cao (oe) but must be exact	dM1A1
				(4)
				Total 14