This resource was created and owned by Pearson Edexcel

Surname	(ther names	
Pearson Edexcel	Centre Number	Candie	date Number
Further P Mathema Advanced/Advance	tics F2	-	

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B). Coloured pencils and highlighter pens must not be used.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided - there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information

- The total mark for this paper is 75.
- The marks for **each** guestion are shown in brackets – use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over 🕨

Summer 2015	www.mystudybro.com This resource was created and owned by Pearson Edexcel	Mathematics F
Past Paper	This resource was created and owned by Pearson Edexcel	WFM0
		Leave
1. Using alg	ebra, find the set of values of x for which	Ulalik
	$\frac{x}{x+2} < \frac{2}{x+5}$	
	x+2 $x+5$	
		(7)
[

P 4 4 8 3 2 A 0 2 3 2

www.mystudybro.com This resource wage മൂറ്റിന്റെ owned by Pearson Edexcel

WFM02 Further Pure Mathematics F2 Mark Scheme

Question Number	Scheme		Notes	Marks
1.	$\frac{x}{x^2} < \frac{2}{x^2}$			
	$\frac{x+2}{2}$ Critical Values -2 and -5	x+5 Seen anywhere in solution Both correct B1B1; one correct B1B0		B1, B1
	$\frac{x}{x+2} - \frac{2}{x+5} < 0$			
	$\frac{\frac{x}{x+2} - \frac{2}{x+5} < 0}{\frac{x^2 + 3x - 4}{(x+2)(x+5)} < 0}$			
	$\frac{(x+4)(x-1)}{(x+2)(x+5)} < 0$		le fraction and factorise use quad formula	M1
-	Critical values -4 and 1	Correct critic graph or num	al values May be seen on a ber line.	A1
	$-5 < x < -4, -2 < x < 1$ $(-5, -4) \cup (-2, 1)$	dM1: Attempt an interval inequality using one of -2 or -5 with another cv A1, A1: Correct intervals Can be in set notation One correct scores A1A0 Award on basis of the inequalities seen - ignore any and/or between them Set notation answers do not need the union sign.		dM1A1,A1
			· • •	(7)
ALT	Critical Values $-2 \text{ and } -5$ $\frac{x}{x+2} < \frac{2}{x+5} \Rightarrow x(x+5)^2(x+2) < 2(x+5)^2(x+5) < 2(x+5)^2(x+5)^2(x+5) < 2(x+5)^2(x+5)^2(x+5) < 2(x+5)^2(x+5)^2(x+5) < 2(x+5)^2(x+5)^2(x+5) < 2(x+5)^2(x$	Critical Values $-2 \text{ and } -5$ Seen anywhere in solution $\frac{x}{x+2} < \frac{2}{x+5} \Rightarrow x(x+5)^2(x+2) < 2(x+2)^2(x+5)$ $\Rightarrow (x+5)(x+2) \lceil x(x+5) - 2(x+2) \rceil < 0$		B1, B1
	$\Rightarrow (x+5)(x+2)\lfloor (x-1)(x+4) \rfloor < 0$ and attempt to factorise a		Multiply by $(x+5)^2(x+2)^2$ and attempt to factorise a quartic or use quad formula	M1
	Critical values -4 and 1		Correct critical values	A1
	$-5 < x < -4, -2 < x < 1$ $(-5, -4) \cup (-2, 1)$ $dM1: Attempt an interval inequality using one of -2 or -5 with another cv$ $A1, A1: Correct intervals Can be in set notation One correct scores A1A0$		dM1A1,A1	
				(7)

Any solutions with no algebra (eg sketch graph followed by critical values with no working) scores max B1B1

Mathematics F2

WFM02 Leave

blank

2. (a) Express
$$\frac{1}{(r+6)(r+8)}$$
 in partial fractions.

(b) Hence show that

$$\sum_{r=1}^{n} \frac{2}{(r+6)(r+8)} = \frac{n(an+b)}{56(n+7)(n+8)}$$

where a and b are integers to be found.

(4)

(1)

Summer		,	hematics F2
Quetstion (Number	Mark Scheme) This resource Scheme	was created and owned by Pearson Edexcel Notes	WFM02 Marks
		$\frac{1}{(r+6)(r+8)}$	
2(a)	$\frac{1}{2(r+6)} - \frac{1}{2(r+8)}$	oe Correct partial fractions, any equivalent form	B1
			(1)
(b)	Expands at least 3 The partial fractions obt	$-\frac{1}{10} + \frac{1}{9} - \frac{1}{11} \dots + \frac{1}{n+5} - \frac{1}{n+7} + \frac{1}{n+6} - \frac{1}{n+8} \right)$ terms at start and 2 at end (may be implied) rained in (a) can be used without multiplying by 2. $\frac{1}{2} \times \frac{1}{9}$ etc These comments apply to both M1 and A1	M1
	$=\frac{1}{7}+\frac{1}{8}-\frac{1}{n+7}-\frac{1}{n}$	$\frac{1}{1+8}$ Identifies the terms that do not cance	1 A1
	$=\frac{15(n+7)(n+8)-56(n+7)(n+8)-56(n+7)(n+8)}{56(n+7)(n+8)}$		M1
	$=\frac{n(15n+113)}{56(n+7)(n+8)}$	3)	A1cso
			(4)
			Total 5

Leave blank

3. (a) Show that the substitution $z = y^{-2}$ transforms the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} + 2xy = x\mathrm{e}^{-x^2}y^3 \quad (\mathrm{I})$$

into the differential equation

$$\frac{\mathrm{d}z}{\mathrm{d}x} - 4xz = -2x\mathrm{e}^{-x^2} \quad (\mathrm{II})$$

- (b) Solve differential equation (II) to find z as a function of x.
- (c) Hence find the general solution of differential equation (I), giving your answer in the form $y^2 = f(x)$.

(1)

(4)

(5)

Summer 2015 Past Paper (Mark Scheme) www.mystudybro.com This resource was created and owned by Pearson Edexcel

WFM02

Question Number	Scheme	Notes	Marks
3	$\frac{\mathrm{d}y}{\mathrm{d}x} + 2xy =$	$= x \mathrm{e}^{-x^2} y^3$	
(a)	$z = y^{-2} \Longrightarrow y = z^{-\frac{1}{2}}$		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{1}{2} z^{-\frac{3}{2}} \frac{\mathrm{d}z}{\mathrm{d}x}$	M1: $\frac{\mathrm{d}y}{\mathrm{d}x} = kz^{-\frac{3}{2}}\frac{\mathrm{d}z}{\mathrm{d}x}$	M1A1
	dx = dx	A1: Correct differentiation	
	$-\frac{1}{2}z^{-\frac{3}{2}}\frac{\mathrm{d}z}{\mathrm{d}x} + \frac{2x}{z^{\frac{1}{2}}} = x\mathrm{e}^{-x^{2}}z^{-\frac{3}{2}}$	Substitutes for dy/dx	M1
	$\frac{\mathrm{d}z}{\mathrm{d}x} - 4xz = -2x\mathrm{e}^{-x^2} *$	Correct completion to printed answer with no errors seen	Alcso
			(4)
	(a) Alt	ernative 1	
	$\frac{\mathrm{d}z}{\mathrm{d}y} = -2y^{-3} \text{oe}$	$M1: \frac{dz}{dy} = ky^{-3}$	M1A1
		A1: Correct differentiation	
	$-\frac{1}{2}y^{3}\frac{dz}{dx} + 2xy = xe^{-x^{2}}y^{3}$	Substitutes for dy/dx	M1
	$\frac{\mathrm{d}z}{\mathrm{d}x} - 4xz = -2x\mathrm{e}^{-x^2} \text{*}$	Correct completion to printed answer with no errors seen	A1
	(a) Alt	ernative 2	
	$\frac{\mathrm{d}z}{\mathrm{d}x} = -2y^{-3}\frac{\mathrm{d}y}{\mathrm{d}x}$	M1: $\frac{dz}{dx} = ky^{-3} \frac{dy}{dx}$ inc chain rule A1: Correct differentiation	M1A1
	$-\frac{1}{2}y^{3}\frac{dz}{dx} + 2xy = xe^{-x^{2}}y^{3}$	Substitutes for dy/dx	M1
	$-\frac{1}{2}y^{3}\frac{dz}{dx} + 2xy = xe^{-x^{2}}y^{3}$ $\frac{dz}{dx} - 4xz = -2xe^{-x^{2}} *$	Correct completion to printed answer with no errors seen	A1
(b)	$I = \mathrm{e}^{\int -4x \mathrm{d}x} = \mathrm{e}^{-2x^2}$	$M1: I = e^{\int \pm 4x dx}$ A1: e^{-2x^2}	- M1A1
	$ze^{-2x^2} = \int -2xe^{-3x^2} dx$	$z \times I = \int -2x \mathrm{e}^{-x^2} I \mathrm{d}x$	dM1
	$\frac{1}{3}e^{-3x^2}(+c)$	$\int x \mathrm{e}^{q x^2} \mathrm{d}x = p \mathrm{e}^{q x^2} \left(+ c \right)$	M1
	$z = ce^{2x^2} + \frac{1}{3}e^{-x^2}$	Or equivalent	A1
			(5)
(c)	$\frac{1}{y^2} = ce^{2x^2} + \frac{1}{3}e^{-x^2} \implies y^2 = \frac{1}{ce^{2x^2} + \frac{1}{3}e^{-x^2}}$	$y^{2} = \frac{1}{(b)} \left(= \frac{3e^{x^{2}}}{1 + ke^{3x^{2}}} \right)$	B1ft
			(1)
			Total 10

WFM02 Leave

blank

4. A transformation *T* from the *z*-plane to the *w*-plane is given by

$$w = \frac{z-1}{z+1}, \quad z \neq -1$$

The line in the z-plane with equation y = 2x is mapped by T onto the curve C in the w-plane.

(a) Show that C is a circle and find its centre and radius.

(7)

The region y < 2x in the *z*-plane is mapped by *T* onto the region *R* in the *w*-plane.

(b) Sketch circle C on an Argand diagram and shade and label region R.

(2)

PastaPaper	r 2015www.mystudybro.comMathe(Mark Scheme)This resource was created and dwned by Pearson Edexcel				
Number	Scheme Notes				
	z – 1	[
	$w = \frac{z-1}{z+1}$	-			
4 (a)	$w = \frac{z - 1}{z + 1} \Longrightarrow wz + w = z - 1 \Longrightarrow z = \dots$	Attempt to make z the subject	M1		
	$z = \frac{w+1}{1-w}$	Correct expression in terms of <i>w</i>	A1		
	$=\frac{u+iv+1}{1-u-iv}\times\frac{1-u+iv}{1-u+iv}$	Introduces " $u + iv$ " and multiplies top and bottom by the complex conjugate of the bottom	M1		
	$x = \frac{-u^2 - v^2 + 1}{v^2}, y = \frac{2v}{v^2}$				
	$y = 2x \Longrightarrow 2v = -2u^2 - 2v^2 + 2$	Uses real and imaginary parts and $y = 2x$ to obtain an equation connecting " <i>u</i> " and " <i>v</i> " Can have the 2 on the wrong side.	M1		
	$u^2 + \left(v + \frac{1}{2}\right)^2 - \frac{1}{4} = 1$	Processes their equation to a form that is recognisable as a circle ie coefficients of u^2 and v^2 are the same and no uv terms	M1		
	Centre (0, $-\frac{1}{2}$), radius $\frac{\sqrt{5}}{2}$	A1: Correct centre (allow -½i) A1: Correct radius	A1,A1		
	2		(7		
	Special Case:				
	•				
	$w = \frac{x + iy - 1}{x + iy + 1} = \frac{(x - 1) + 2xi}{(x + 1) + 2xi} \times \frac{(x + 1) - 2xi}{(x + 1) - 2xi}$	M1: rationalise the denominator, may have $2x$ or y			
	$=\frac{(x^{2}-1)+4x^{2}+2xi(x+1-(x-1))}{(x+1)^{2}+4x^{2}}$	A1: Correct result in terms of <i>x</i> only. Must have rational denominator shown, but no other simplification needed			
(b)		B1ft: Their circle correctly positioned provided their equation does give a circle			
	R	B1: Completely correct sketch and shading	B1ft B1		
			(2		
			Total 9		
		I			

Mathematics F2

(3)

WFM02 Leave

blank

- Given that $y = \cot x$, 5.
 - (a) show that

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 2\cot x + 2\cot^3 x$$

(b) Hence show that

$$\frac{\mathrm{d}^3 y}{\mathrm{d}x^3} = p \cot^4 x + q \cot^2 x + r$$

$\frac{d^2 y}{dx^3} = p \cot^4 x + q \cot^2 x + r$
where p, q and r are integers to be found. (3)
(c) Find the Taylor series expansion of $\cot x$ in ascending powers of $\left(x - \frac{\pi}{3}\right)$ up to and including the term $\ln \left(x - \frac{\pi}{3}\right)^3$. (3)

Summer Past Paper (ed and owned by Pearson Edexcel Mathe	matics F2 WFM02			
Question Number	Scheme	Scheme Notes			Scheme Notes N	
5	$y = \cot x$					
(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\mathrm{cosec}^2 x$					
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = (-2\mathrm{cosec}x)(-\mathrm{cosec}x\cot x)$	M1: Differentiates using the chain rule or product/quotient rule A1: Correct derivative	M1A1			
-	$= 2\operatorname{cosec}^2 x \cot x = 2\cot x + 2\cot^3 x^*$	A1: Correct completion to printed answer $1 + \cot^2 x = \csc^2 x$ or $\cos^2 x + \sin^2 x = 1$ must be used Full working must be shown	A1cso*			
	۸Jt	ernative:	(1			
		$\frac{-\sin^2 x - \cos^2 x}{\sin^2 x} = -\frac{1}{\sin^2 x}$				
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = -\left(-2\right)$	$2\sin^{-3}x\cos x\Big) = \dots$	M1A1			
	A1: Correct completion	n to printed answer see above	A1			
(b)	$\frac{d^3 y}{dx^3} = -2\csc^2 x - 6\cot^2 x \csc^2 x$	Correct third derivative	B1			
	$= -2(1 + \cot^2 x) - 6\cot^2 x(1 + \cot^2 x)$	Uses $1 + \cot^2 x = \csc^2 x$	M1			
	$=-6\cot^4 x-8\cot^2 x-2$	CSO	A1			
(c)		$\frac{1}{5}, f''\left(\frac{\pi}{3}\right) = \frac{8}{3\sqrt{3}}, f'''\left(\frac{\pi}{3}\right) = -\frac{16}{3}$ at $\frac{\pi}{3}$ No working need be shown	(M1			
	M1: Correct application of Taylor usi A1: Correct expression f(x) allowed provided defined Decimal equivalents allowed (min 2)	$+\frac{4}{3\sqrt{3}}\left(x-\frac{\pi}{3}\right)^2 -\frac{8}{9}\left(x-\frac{\pi}{3}\right)^3$ ng their values. Must be up to and including $x-\frac{\pi}{3}\right)^3$ on Must start $y = \dots$ or $\cot x$ here or above as $f(x) = \cot x$ or y 3 sf apart from 0.77), 0.578, 1.33, 0.770, accept 0.77) 0.889	M1A1			
			(
			Total 9			

WFM02 Leave blank (a) Find the general solution of the differential equation 6. $\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - 2\frac{\mathrm{d}y}{\mathrm{d}x} - 3y = 2\sin x \quad (\mathrm{I})$ (8) Given that y = 0 and $\frac{dy}{dx} = 1$ when x = 0(b) find the particular solution of differential equation (I). (5) 20 P 4 4 8 3 2 A 0 2 0 3 2

Summer Past Paper (udybro.com Mathe	wFM02
Question Number	Scheme	Notes	Marks
6(a)	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - 2\frac{\mathrm{d}y}{\mathrm{d}x} - 3$	$3y = 2\sin x$	
	AE: $m^2 - 2m - 3 = 0$		
	$m^2 - 2m - 3 = 0 \Longrightarrow m = \dots (-1, 3)$	Forms Auxiliary Equation and attempts to solve (usual rules)	M1
	$(y=)Ae^{3x}+Be^{-x}$	Cao	A1
	$PI: (y =) p \sin x + q \cos x$	Correct form for PI	B1
	$(y' =) p \cos x - q \sin x$		
·	$(y'' =) - p \sin x - q \cos x$		
	$-p\sin x - q\cos x - 2(p\cos x - q\sin x)$ Differentiates twic	,	M1
	2q - 4p = 2, 4q + 2p = 0	Correct equations	A1
	$p = -\frac{2}{5}, \ q = \frac{1}{5}$	A1A1 both correct A1A0 one correct	A1A1
	$y = \frac{1}{5}\cos x - \frac{2}{5}\sin x$		
	$y = \frac{1}{5}\cos x - \frac{2}{5}\sin x$ $y = Ae^{3x} + Be^{-x} + \frac{1}{5}\cos x - \frac{2}{5}\sin x$	Follow through their p and q and their CF	B1ft
			(8)
(b)	$y' = 3Ae^{3x} - Be^{-x} - \frac{1}{5}\sin x - \frac{2}{5}\cos x$	Differentiates their GS	M1
	$0 = A + B + \frac{1}{5}, \ 1 = 3A - B - \frac{2}{5}$	M1: Uses the given conditions to give two equations in A and B A1: Correct equations	M1A1
-	$A = \frac{3}{10}, \ B = -\frac{1}{2}$	Solves for <i>A</i> and <i>B</i> Both correct	A1
	$A = \frac{3}{10}, \ B = -\frac{1}{2}$ $y = \frac{3}{10}e^{3x} - \frac{1}{2}e^{-x} + \frac{1}{5}\cos x - \frac{2}{5}\sin x$	Sub their values of <i>A</i> and <i>B</i> in their GS	A1ft
			(5)
			Total 13

P 4 4 8 3 2 A 0 2 4 3 2

Summer 2015 Past Paper (Mark Scheme)

www.mystudybro.com This resource was created and owned by Pearson Edexcel

Mathematics F2

WFM02

Question Number			Marks	
7(a)	$\theta = \frac{\pi}{3} \Longrightarrow r = \sqrt{3}\sin\left(\frac{\pi}{3}\right) = \frac{3}{2}$	Attempt to verify coordinates in at least one of the polar equations	M1	
	$\theta = \frac{\pi}{3} \Longrightarrow r = 1 + \cos\left(\frac{\pi}{3}\right) = \frac{3}{2}$	Coordinates verified in both curves (Coordinate brackets not needed)	A1	
	Alternat	ive:		
	Equate rs: $\sqrt{3}\sin\theta = 1 + \cos\theta$ and verify (by or solve by using $t = \tan\frac{\theta}{2}$	substitution) that $\theta = \frac{\pi}{3}$ is a solution	M	
	2		M1	
	or writing $\frac{\sqrt{3}}{2}\sin\theta - \frac{1}{2}\cos\theta = \frac{1}{2}$ $\sin\left(\theta - \frac{\pi}{6}\right)$			
	Squaring the original equation allowed as θ is	known to be between 0 and π		
	Use $\theta = \frac{\pi}{3}$ in either equation to obtain $r = \frac{3}{2}$		A1	
(b)	$\frac{1}{2}\int (\sqrt{3}\sin\theta)^2 \mathrm{d}\theta, \frac{1}{2}\int (1+\cos\theta)^2 \mathrm{d}\theta$	Correct formula used on at least one curve (1/2 may appear later) Integrals may be separate or added or subtracted.	M1	
	$=\frac{1}{2}\int 3\sin^2\theta \mathrm{d}\theta, \qquad \frac{1}{2}\int (1+2\cos\theta+\cos^2\theta)\mathrm{d}\theta$			
	$= \left(\frac{1}{2}\right) \int \frac{3}{2} (1 - \cos 2\theta) d\theta, \left(\frac{1}{2}\right) \int (1 + 2\cos \theta + \frac{1}{2} (1 + \cos 2\theta)) d\theta$			
	Attempt to use $\sin^2 \theta$ or $\cos^2 \theta = \pm \frac{1}{2} \pm \frac{1}{2} \cos 2\theta$ on either integral			
	Not dependent 1/2 may be missing			
	$=\frac{3}{4}\left[\theta - \frac{1}{2}\sin 2\theta\right]_{(0)}^{\left(\frac{\pi}{3}\right)}, \frac{1}{2}\left[\frac{3}{2}\right]_{(0)}^{\left(\frac{\pi}{3}\right)}, \frac{1}{2}\left[\frac{3}{2}\right]_{(0)}^{\left(\frac{\pi}{3}\right)}$	A1, A1		
	Correct integration (ignore limits) A1A1 or A1A0			
	$R = \frac{3}{4} \left[\frac{\pi}{3} - \frac{\sqrt{3}}{4} \left(-0 \right) \right] + \frac{1}{2} \left[\frac{3\pi}{2} - \left(\frac{\pi}{2} + \sqrt{3} + \frac{\sqrt{3}}{8} \right) \right]$	Correct use of limits for both integrals Integrals must be added. Dep on both previous M marks	dd M1	
	$=\frac{3}{4}\left(\pi-\sqrt{3}\right)$	Cao No equivalents allowed	A1	
			(6)	
			Total 8	

Mathematics F2

(3)

WFM02 Leave

blank

8. (a) Show that

$$\left(z+\frac{1}{z}\right)^{3}\left(z-\frac{1}{z}\right)^{3} = z^{6} - \frac{1}{z^{6}} - k\left(z^{2} - \frac{1}{z^{2}}\right)$$

where *k* is a constant to be found.

Given that $z = \cos \theta + i \sin \theta$, where θ is real,

(b) show that

(i)
$$z^n + \frac{1}{z^n} = 2\cos n\theta$$

(ii) $z^n - \frac{1}{z^n} = 2i\sin n\theta$
(3)

(c) Hence show that

$$\cos^3\theta \sin^3\theta = \frac{1}{32} (3\sin 2\theta - \sin 6\theta)$$
(4)

(d) Find the exact value of

$$\int_{0}^{\frac{\pi}{8}}\cos^{3}\theta\sin^{3}\theta\,\mathrm{d}\theta\tag{4}$$

Summer 2	2015 www.mystudybro.com Mather Mark Scheme) This resource was created and gwned by Pearson Edexcel		ematics F2	
Question Number	Scheme	Notes		Marks
8(a)	$\left(z + \frac{1}{z}\right)^{3} \left(z - \frac{1}{z}\right)^{3} = \left(z^{2} - \frac{1}{z^{2}}\right)^{3}$ $= z^{6} - 3z^{2} + \frac{3}{z^{2}} - z^{-6}$			
	N		npt to expand ct expansion	M1A1
	$= z^6 - \frac{1}{z^6} - 3\left(z^2 - \frac{1}{z^2}\right)$	Correct ar	swer with no errors seen	A1
				(3)
(a) ALT	$\left(z+\frac{1}{z}\right)^3 = z^3 + 3z + \frac{3}{z} + \frac{1}{z^3}, (z)$	$\left(z - \frac{1}{z}\right)^3 = z^3$	$-3z+\frac{3}{z}-\frac{1}{z^3}$	M1A1
	M1: Attempt to expand both cubic br	ackets A1:	Correct expansions	
	$= z^6 - \frac{1}{z^6} - 3\left(z^2 - \frac{1}{z^2}\right)$	Correct a	answer with no errors	A1
				(3)
(b)(i)(ii)	$z^n = \cos n\theta + i\sin n\theta$		application of de Moivre	B1
	$z^{-n} = \cos(-n\theta) + i\sin(-n\theta) = \pm \cos n\theta \pm \sin n$ but must be different from their z^n	θ Attempt	z^{-n}	M1
	$z^n + \frac{1}{z^n} = 2\cos n\theta^*, \ z^n - \frac{1}{z^n} = 2i\sin n\theta^*$	$z^{-n} = co$	$sn\theta - i\sin n\theta$ must be seen	A1*
(a)				(3)
(c)	$\left(z+\frac{1}{z}\right)^{3}\left(z-\frac{1}{z}\right)^{3} = \left(2\cos\theta\right)^{3}\left(2i\sin\theta\right)^{3}$			B1
	$z^{6} - \frac{1}{z^{6}} - 3\left(z^{2} - \frac{1}{z^{2}}\right) = 2i\sin 6\theta - 6i\sin 2\theta$	Follow t	hrough their k in place of 3	B1ft
	$-64i\sin^3\theta\cos^3\theta = 2i\sin 6\theta - 6i\sin 2\theta$	simplify	g right hand sides and ing $2^3 \times (2i)^3$ (B mark or each side to gain M	M1
	$\cos^3\theta\sin^3\theta = \frac{1}{32}(3\sin 2\theta - \sin 6\theta) *$			A1cso
				(4)
(d)	$\int_{0}^{\frac{\pi}{8}} \cos^{3}\theta \sin^{3}\theta \mathrm{d}\theta = \int_{0}^{\frac{\pi}{8}} \frac{1}{32}$	$-(3\sin 2\theta -$	$\sin 6 heta)d heta$	
	_ π		M1: $p\cos 2\theta + q\cos 6\theta$	
	$=\frac{1}{32}\left[-\frac{3}{2}\cos 2\theta+\frac{1}{6}\cos 6\theta\right]_{0}^{\overline{8}}$		A1: Correct integration Differentiation scores M0A0	M1A1
	$=\frac{1}{32}\left[\left(-\frac{3}{2\sqrt{2}}-\frac{1}{6\sqrt{2}}\right)-\left(-\frac{3}{2}+\frac{1}{6}\right)\right]=\frac{1}{32}\left(\frac{3}{2}\right)$	$\frac{4}{3} - \frac{5\sqrt{2}}{6} \bigg)$	dM1: Correct use of limits – lower limit to have non-zero result. Dep on previous M mark A1: Cao (oe) but must be exact	dM1A1
				(4)
				Total 14