This resource was created and owned by Pearson Edexcel

WMA01

Please check the examination details below before entering your candidate information				
Candidate surname		Other names		
Pearson Edexcel International Advanced Level	entre Number	Candidate Number		
Wednesday 10	Octo	ber 2018		
Morning (Time: 2 hours 30 minutes) Paper Reference WMA01/01				
Core Mathematics C12 Advanced Subsidiary				

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B). Coloured pencils and highlighter pens must not be used.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information

- The total mark for this paper is 125.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

This resource was created and owned by Pearson Edexcel

Leave
blank

1. (i) Given that $125\sqrt{5} = 5^a$, find the value of a.

(2)

(ii) Show that
$$\frac{16}{4 - \sqrt{8}} = 8 + 4\sqrt{2}$$

You must show all stages of your working.

(3)

Past Paper (Mark Scheme)

www.mystudybro.com
This resource was created and owned by Pearson Edexcel

Question Number	Scheme	Notes	Marks	
1(i) Way 1	$125\sqrt{5} = 5^3 \times 5^{\frac{1}{2}} = 5^{3+\frac{1}{2}}$	Writes $125\sqrt{5} = 5^p \times 5^q$ with at least one of $p = 3$ or $q = \frac{1}{2}$ and adds their p and q	M1	
	$=5^{3\frac{1}{2}}$ or $a=3\frac{1}{2}$ or 3.5	Sight of $a = 3\frac{1}{2}$ or 3.5 or $5^{3\frac{1}{2}}$	A1	
	Note that some candidates are treating the 125 as $\sqrt{125}$ and then writing $\sqrt{125}$ as $5 \times 5^{\frac{1}{2}}$ which leads to $a = 2$. This is M0 as they are not writing 125 as a power of 5.			
Way 2	125 5 59 1 125 5 1 59	Takes logs base 5 of both sides and uses	(2)	
vvay 2	$125\sqrt{5} = 5^a \Rightarrow \log_5 125\sqrt{5} = \log_5 5^a$	power rule i.e. $\log_5 5^a = a \log_5 5$ or	M1	
	$\Rightarrow \log_5 125\sqrt{5} = a \log_5 5$	$\log_5 5^a = a$		
	$=5^{\frac{3}{2}}$ or $a=3\frac{1}{2}$ or 3.5	Sight of $a = 3\frac{1}{2}$ or 3.5 or $5^{3\frac{1}{2}}$	A1	
			(2)	
Way 3	$125\sqrt{5} = 5^a \Rightarrow \log 125\sqrt{5} = \log 5^a$	Takes logs to the same base of both	M1	
	$\Rightarrow \log 125\sqrt{5} = a \log 5$	sides and uses the power rule correctly.	1411	
	$=5^{3\frac{1}{2}}$ or $a=3\frac{1}{2}$ or 3.5	Sight of $a = 3\frac{1}{2}$ or 3.5 or $5^{3\frac{1}{2}}$	A1	
			(2)	
Way 4	$125\sqrt{5} = 5^a \Rightarrow \left(125\sqrt{5}\right)^2 = \left(5^a\right)^2$	Squares both sides and takes log base 5 or takes logs in a different base and uses	M1	
	$125\sqrt{5} = 5^a \Rightarrow 78125 = 5^{2a}$	the power rule correctly		
	$2a = \log_5 78125 \text{ or } \log 78125 = 2a \log 5$			
	$=5^{3\frac{1}{2}}$ or $a=3\frac{1}{2}$ or 3.5	Sight of $a = 3\frac{1}{2}$ or 3.5 or $5^{3\frac{1}{2}}$	A1	
			(2)	
	Correct answer in (i) with no inco	rrect working scores both marks		
	Note that in (i) if they take log			
$125\sqrt{5} = 5^a \Rightarrow \log 125 \times \log \sqrt{5} = a \log 5$				
	this scor	res M0.		

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

(ii)	$\frac{16(4+\sqrt{8})}{(4-\sqrt{8})(4+\sqrt{8})}$ $\frac{16(4+\sqrt{8})}{(4-\sqrt{8})(4+\sqrt{8})}$ $\frac{16(4+2\sqrt{2})}{(4-\sqrt{8})(4+\sqrt{8})}$	Multiply numerator and denominator by $\pm (4 + \sqrt{8})$ or equivalent e.g. $\pm (4 + 2\sqrt{2})$ Note that this statement is sufficient. This mark may be implied by a correct expression in the numerator and $16 - 8$ or a full expansion in the denominator. $= \pm {16 - 8} \text{ or } = \pm {8} \text{ or } = \pm {16 + 4\sqrt{8} - 4\sqrt{8} - 8}$	M1
	$= 8 + 4\sqrt{9}$ Fully correct proof with an intermediate line we expansion seen in the denominator and $\sqrt{8} = 2$ explicitly stated). Note that in this question we brackets so that starting with e.g. $\frac{16(4+\sqrt{8})}{4-\sqrt{8}(4+\sqrt{8})}, \frac{16}{4-\sqrt{8}} \times \frac{4+\sqrt{8}}{4+\sqrt{8}}$	with $16 - 8$ or 8 or a full correct $2\sqrt{2}$ used (does not need to be re are allowing recovery from invisible	A1
			(3)

(ii)	An alternative is to cancel 2 throughout then the so	cheme follows the same pattern:	
	16 _ 16 8		
	$\frac{16}{\left(4-\sqrt{8}\right)} = \frac{16}{4-2\sqrt{2}} = \frac{8}{2-\sqrt{2}}$		
	$= \frac{8(2+\sqrt{2})}{(2-\sqrt{2})(2+\sqrt{2})}$ $= \frac{\pm(2+\sqrt{2})}{(2-\sqrt{2})(2+\sqrt{2})}$ $= \frac{\pm(2+\sqrt{2})}{\text{sufficient correct supports }}$	ly numerator and denominator by $(\sqrt{2})$. Note that this statement is ent. This mark may be implied by a expression in the numerator and r a full expansion in the inator.	M1
	$=\frac{8(2+\sqrt{2})}{4-2} \qquad =\pm\frac{4}{4}$	$\frac{\dots}{-2} \text{or} = \pm \frac{\dots}{2} \text{or}$ $\frac{\dots}{+2\sqrt{2} - 2\sqrt{2} - 2}$	A1
	$=8+4\sqrt{2}*$	nust follow M1	
	Fully correct proof with an intermediate line with $4-2$ or 2 or a full correct expansion seen in the denominator and $\sqrt{8} = 2\sqrt{2}$ used. Note that in this question we are allowing recovery from invisible brackets so that starting with e.g.		A1
	$\frac{8(2+\sqrt{2})}{2-\sqrt{2}(2+\sqrt{2})}, \frac{8}{2-\sqrt{2}} \times \frac{2+\sqrt{2}}{2+\sqrt{2}}, \text{ should not be penalised.}$		
			(3)

Autumn 2018

Mathematics C12

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Alternative for (ii)		
$\left(8+4\sqrt{2}\right)\left(4-\sqrt{8}\right)=\dots$	Attempt to expand to at least 3 terms	M1
$= 32 - 8\sqrt{8} + 16\sqrt{2} - 4\sqrt{16}$	All terms correct	A1
$= 16 : \frac{16}{4 - \sqrt{8}} = 8 + 4\sqrt{2}$	Obtains 16 correctly with a conclusion which could be as shown or allow just a tick, #, QED etc.	A1
		Total 5

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

WMA01

Leave	
blank	

2.	Use algebra	to solve	the simultaneous	equations
----	-------------	----------	------------------	-----------

$$x + y = 5$$

$$x^2 + x + y^2 = 51$$

You must show all stages of your working.

(7)

www.mystudybro.com

Past Paper (Mark Scheme) This resource was created and owned by Pearson Edexcel

Mathematics C12

WMA01

Question Number	Scheme	Notes	Marks
2	$x + y = 5$ $x^2 + x + y^2 = 51$		
	$y = 5 - x \Rightarrow x^{2} + x + (5 - x)^{2} = 51$ or $x = 5 - y \Rightarrow (5 - y)^{2} + (5 - y) + y^{2} = 51$	Attempts to rearrange the linear equation to $y =$ or $x =$ and attempts to fully substitute into the second equation.	M1
	$2x^2 - 9x - 26 = 0$ or	Collect terms together to produce a 2 or 3 term quadratic expression = 0. The '= 0' may be implied by later work.	M1
	$2y^2 - 11y - 21 = 0$	Correct quadratic equation in x or y	A1
	$(2x-13)(x+2) = 0 \Rightarrow x = \dots$ or $(2y+3)(y-7) = 0 \Rightarrow y = \dots$	Attempt to factorise and solve or complete the square and solve or uses a correct quadratic formula for a 3 term quadratic and obtains at least one value of x or y. Dependent on both previous method marks. (May be implied by their values)	d M1
	x = 6.5, x = -2 or y = -1.5, y = 7	Correct answers for either both values of x or both values of y (possibly unsimplified)	A1 cso
	Substitutes their x into their $y = 5 - x$ or Substitutes their y into their $x = 5 - y$	Substitute at least one value of <i>x</i> to find <i>y</i> or vice versa. You may need to check if the substitution is not shown explicitly.	M1
	$x = 6.5 \left(\text{or} \frac{13}{2} \right), x = -2$ and $y = -1.5 \left(\text{or} - \frac{3}{2} \right), y = 7$	Fully correct solutions and simplified. Coordinates do not need to be paired.	A1 cso
	Note that some candidates solve their quadratic in y and call these x and so the values will be the wrong way round. In such cases the final 2 A marks can be witheld.		
			(7)
			Total 7

Note that the following is an incorrect method but the final method mark is still available:

$$x+y=5 \Rightarrow x^2+y^2=25$$

$$x^2+y^2=25, \ x^2+x+y^2=51 \Rightarrow x=26$$
Scores M0M0A0dM0A0
But then
$$x=26 \Rightarrow y=5-26=-21$$
Scores M1A0

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

WMA01

Leave	
hlank	

3. Given that $y = 2x^3 - \frac{5}{3x^2} + 7$, $x \ne 0$, find in its simplest form

(a) $\frac{\mathrm{d}y}{\mathrm{d}x}$,

(3)

(b) $\int y \, dx$.

(4)

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question	g 1	N	3.6.1
Number	Scheme	Notes	Marks
3(a)		$x^n \to x^{n-1}$ seen at least once.	M1
		Allow $7 \rightarrow 0$ as evidence.	1,11
		$3\times 2x^2$ or $-2\times \frac{-5}{2}x^{-3}$ (One correct	A1
		term unsimplified or simplified)	Al
		Fully correct answer on one line	
	10	$6x^2 + \frac{10}{3x^3}$ or $6x^2 + \frac{10}{3}x^{-3}$	
	$6x^2 + \frac{10}{3x^3}$	JX J	
	Allow $3\frac{1}{3}$ or 3.3 (clear dot over the 3)		
	c 10 (rc)	A1	
		for $\frac{10}{3}$ (If + c is present score A0)	
		Do not allow 'double decker' fractions	
		e.g. $\frac{3\frac{1}{3}}{r^3}$	
		X	(3)
(b)		$x^n \to x^{n+1}$ seen at least once.	(-)
		Allow $7 \rightarrow 7x$ as evidence.	M1
		But an attempt to integrate their	1,11
	,	answer to part (a) is M0	
	$\frac{x^4}{2} + \frac{5}{3x} + \dots$	$2\frac{x^4}{4}$ or $\frac{-5}{3} \times \frac{x^{-1}}{-1}$ (one of the first 2 terms	A1
	$2 \cdot 3x$	1	Al
		correct unsimplified or simplified)	
		$2\frac{x^4}{4}$ and $\frac{-5}{3} \times \frac{x^{-1}}{-1}$ (both of the first 2 terms	A1
		correct unsimplified or simplified)	
		Fully correct answer on one line	
		including the + c. For $\frac{5}{3x}$ allow $\frac{5}{3}x^{-1}$	
		$\frac{1}{3x} = \frac{1}{3x} = \frac{1}{3} = $	
	x^4 5 . 7 .	or $1\frac{2}{3}x^{-1}$ or $1.\dot{6}x^{-1}$ or $\frac{1.\dot{6}}{x}$ (clear dot	A1
	$\frac{x^4}{2} + \frac{5}{3x} + 7x + c$	over the 6). Do not allow x^1 for x .	AI
		Do not allow 'double decker' fractions	
		e.g. $\frac{1\frac{2}{3}}{3}$	
		c.g	
			(4)
			Total 7

WMA01

blank

Leave

4. A sequence of numbers u_1, u_2, u_3, \dots satisfies

$$u_n = kn - 3^n$$

where k is a constant.

Given that $u_2 = u_4$

(a) find the value of k

(3)

(b) evaluate $\sum_{r=1}^{4} u_r$

(3)

Autumn 2018

Mathematics C12

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question Number	Scheme	Notes	Marks
4(a)	$u_2 = 2k - 3^2$ or $u_4 = 4k - 3^4$	Attempts to use the given formula correctly at least once for u_2 or u_4 . So e.g. $u_2 = 4k - 3^4$ is M0	M1
	$2k - 9 = 4k - 81 \Rightarrow k = \dots$	Puts their u_2 = their u_4 and attempts to solve for k .	M1
	<i>k</i> = 36	cao	A1
			(3)
(b)	$u_1 = "36" - 3^1, \ u_2 = 2("36") - 3^2,$ $u_3 = 3("36") - 3^3, \ u_4 = 4("36") - 3^4$	Attempts to find the values of the first 4 terms <u>correctly</u> using their value of <i>k</i> . Allow slips but the method and intention should be clear.	M1
	$\sum_{r=1}^{4} u_r = u_1 + u_2 + u_3 + u_4$ $(33 + 63 + 81 + 63)$	Adds their first 4 terms. Allow if in terms of k e.g. $k-3+2k-3^2+3k-3^3+4k-3^4$ (= $10k-120$)	M1
	$\left(\sum_{r=1}^{4} u_r = \right) 240$	cao	A1
			(3)
			Total 6

This resource was created and owned by Pearson Edexcel

WMA01

Leave blank

5. (a) Find the first 4 terms, in ascending powers of x, of the binomial expansion of

$$\left(1 - \frac{1}{2}x\right)^{10}$$

giving each term in its simplest form.

(4)

(b) Hence find the coefficient of x^3 in the expansion of

$$(3+5x-2x^2)\left(1-\frac{1}{2}x\right)^{10}$$

(2)

Autumn 2018 www.mystudybro.com
Past Paper (Mark Scheme) This resource was created and owned by Pearson Edexcel

Mathematics C12

Question Number	Scheme	Notes	Marks	
5(a)	$\left(1-\frac{1}{2}x\right)^{10}$			
	$\left(1 - \frac{1}{2}x\right)^{10} = 1 + \binom{10}{1}\left(-\frac{1}{2}x\right) + \binom{10}{2}\left(-\frac{1}{2}x\right) + $	$\left(-\frac{1}{2}x\right)^2 + \left(\frac{10}{3}\right)\left(-\frac{1}{2}x\right)^3 \dots$	M1	
	M1: The method mark is awarded for an attempt at and/or fourth term. The correct binomial coefficient	1 0		
	power of x. Ignore bracket errors and omission of or incorrect powers of $\pm \frac{1}{2}$. Accept any			
	notation for ${}^{10}C_2$ or ${}^{10}C_3$, e.g. $\binom{10}{2}$ or $\binom{10}{3}$ or 45	5 or 120 from Pascal's triangle.		
		Allow terms to be "listed". Allow		
		equivalents for $\frac{45}{4}$ e.g. $11\frac{1}{4}$, 11.25		
	$=1-5x, +\frac{45}{4}x^2, -15x^3 + \dots$	Allow $+\frac{45}{4}x^2$ to come from	B1, A1, A1	
	·	$\left(\frac{10}{2} \right) \left(\frac{1}{2} x \right)^2$. Do not allow $1 + -5x$		
		for $1-5x$ or $+-15x^3$ for $-15x^3$.	(4)	
(1-)		. 10	(4)	
(b)	$\left(3+5x-2x^2\right)\left(1-\frac{1}{2}\right)$	$\left(-\frac{1}{2}x\right)^{10}$		
	$\left(3+5x-2x^2\right)\left(1-\frac{1}{2}x\right)^{10} = \left(3+5x-2x^2\right)^{10}$	$\left(1 - 5x + \frac{45}{4}x^2 - 15x^3\right) = \dots$		
	Uses their expansion from part (a) to identify the x^3 terms or the x^3 coeff	icients together	M1	
	Look for $3 \times ("-15") + 5 \times \left("\frac{45}{4} " \right) + (-2) \times$	("-5") with or without the x^3 's		
	$\frac{85}{4}$ oe	Cao (Allow $\frac{85}{4}x^3$)	A1	
			(2)	
			Total 6	

www.mystudybro.com

Past Paper

This resource was created and owned by Pearson Edexcel

WMA01

Leave blank

6. (a) Sketch the graph of $y = \left(\frac{1}{2}\right)^x$, $x \in \mathbb{R}$, showing the coordinates of the point at which the graph crosses the y-axis.

(2)

The table below gives corresponding values of x and y, for $y = \left(\frac{1}{2}\right)^x$

The values of *y* are rounded to 3 decimal places.

x	-0.9	-0.8	-0.7	-0.6	-0.5
у	1.866	1.741	1.625	1.516	1.414

(b) Use the trapezium rule with all the values of y from the table to find an approximate value for

$$\int_{-0.9}^{-0.5} \left(\frac{1}{2}\right)^x \mathrm{d}x$$

(3)

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Mathematics C12 WMA01

Question Number	Scheme	Notes	Marks
6(a)	(0,		
	Correct shape : Look for a curve in quadrants negative gradient (<-1) becoming less negative points. Allow the curve to tend towards the vertoo far beyond the vertical and allow if it does the rhs. or A curve or line with an intercept on the position as long as it is in the correct place. Allow if a or e.g. $x = 0$, $y = 1$ if it is. The sketch has	1 and 2 that moves smoothly from a live to approximately 0 with no turning critical on the lhs as long as it does not go a not appear asymptotic to the x -axis on live y -axis marked as 1 or $(0, 1)$ or $(1, 0)$ away from the sketch but must be $(0, 1)$	B1
	Correct shape , position and intercept : Shape look for an asymptote that is at least below a hand the intercept and the <i>x</i> -axis.	-	B1
			(2)
(b)	h = 0.1	Correct h (Allow $h = -0.1$). May be implied by their trapezium rule and may be unsimplified e.g. $((-0.5)-(-0.9))/4$	B1
	$A = \frac{1}{2}(0.1)\left[1.866 + 1.414 + 2(1.741 + 1.625 + 1.516)\right]$		
	A correct application of the trapezium rule of correct but may be implied by their final answincorrect. Note that 1.866+1.414+2	using their h . The bracketing must be wer. You may need to check if their h is $2(1.741+1.625+1.516)=13.044$	
	The 'square' brackets needs to contain first bracket to be multiplied by 2 and to be the sur table with no additional values. If the only mi value from inner bracket this may be regardlewed (An extra repeated term for M0 if values used are x values)	mmation of the remaining y values in the stake is a copying error or is to omit one rded as a slip and the M mark can be orfeits the M mark however).	M1
	$A = \frac{1}{2}(0.1)1.866 + 1.414 + 2(1.741 + 1.62)$		
	$A = \frac{1}{2}(0.1)1.866 + 1.414 + 2(1.741 + 1.62)$	(25+1.516) = 0.6522 scores B1M1A1	
	Separate trapezia may be used: B1 for $h = 0$. and trapezia adde	ed together.	
	A = 0.6522 or $A = 0.652$	Allow either answer (must be positive) and allow $\frac{3261}{5000}$ if no decimal	A1
		seen.	(3)
			Total 5

D 0 0 +	Paper
- สธเ	rabei

This resource was created and owned by Pearson Edexcel

7. The point A has coordinates (-1, 5) and the point B has coordinates (4, 1).

Leave blank

The line l passes through the points A and B.

(a) Find the gradient of l.

(2)

(b) Find an equation for *l*, giving your answer in the form ax + by + c = 0where a, b and c are integers.

(2)

The point M is the midpoint of AB.

The point C has coordinates (5, k) where k is a constant.

Given that the distance from *M* to *C* is $\sqrt{13}$

(c) find the exact possible values of the constant k.

(4)

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Mathematics	C12

Question Number	Scheme	Notes	Marks				
7(a)	$m = \frac{5-1}{-1-4}$	Attempts $\frac{\text{change in } y}{\text{change in } x}$. Condone one sign slip. Maybe implied by $\pm \frac{4}{5}$	M1				
	$=-\frac{4}{5}$	cao	A1				
	Correct answer only so	cores both marks.					
			(2)				
(a) Way 2	$5 = -m + c$ $1 = 4m + c$ $\Rightarrow 5 - 1 = -m - 4m \Rightarrow m = \dots$	Correct method for the gradient	M1				
	$(m=)-\frac{4}{5}$	cao	A1				
			(2)				
(b)	$y-5 = "-\frac{4}{5}"(x+1)$ or $y-1 = "-\frac{4}{5}"(x-4)$	Uses A or B and their m in a correct straight line method. If using $y = mx + c$ must reach as far as $c =$ Attempting the normal is M0.	M1				
	4x + 5y - 21 = 0	Allow any integer multiple	A1				
			(2)				
(c)	M is $\left(\frac{3}{2},3\right)$	Correct midpoint	B1				
	Correct use of Pytha	$MC^{2} = \left(5 - \frac{3}{2}\right)^{2} + (k - 3)^{2}$ Correct use of Pythagoras for MC . E.g. sight of $\left(5 - \frac{3}{2}\right)^{2} + h^{2}$ or $\sqrt{\left(5 - \frac{3}{2}\right)^{2} + h^{2}}$ where $h = k - 3$ or $h = k$					
	$\left(5 - \frac{3}{2}\right)^2 + \left(k - 3\right)^2 = 13 \Rightarrow k = \dots$	Uses $\sqrt{13}$ correctly to find a value for k . Must be a correct method so e.g. $\left(5 - \frac{3}{2}\right)^2 + \left(k - 3\right)^2 = 13^2 \text{ scores M0}$ Dependent on the first M mark.	d M1				
	$(k=)3\pm\frac{\sqrt{3}}{2} \text{ oe}$	Both. Accept e.g. $\frac{24 \pm \sqrt{48}}{8}, \frac{6 \pm \sqrt{3}}{2}$ and ignore how they are referenced, e.g. there is no need for $k = \dots$	A1				
			(4) Total 8				
			า บเลา ช				

WMA01 Leave

blank

8.

■ Past Paper

$$f(x) = 2x^3 - 3x^2 + px + q$$

where p and q are constants.

When f(x) is divided by (x-1), the remainder is -6

(a) Use the remainder theorem to show that p + q = -5

(2)

Given also that (x + 2) is a factor of f(x),

(b) find the value of p and the value of q.

(3)

(c) Factorise f(x) completely.

(4)

Autumn 2018

Mathematics C12

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question Number	Scheme Notes						
8	(Mark (a) and	(b) together)					
(a)	$2(1)^3 - 3(1)^2 + p(1) + q = -6$	Attempts $f(\pm 1) = -6$	M1				
	<i>p</i> + <i>q</i> = –5 *	Correct equation with no errors.	A1				
			(2)				
(a) Way 2	$ \frac{2x^{2}-x+p-1}{x-1} $ $ \frac{2x^{3}-3x^{2}+px+q}{2x^{3}-2x^{2}} $ $ -x^{2}+px+q $ $ \frac{-x^{2}+x}{(p-1)x+q} $ $ \frac{(p-1)x-(p-1)}{p+q-1} $ $ \Rightarrow p+q-1=-6 $	Attempts long division correctly (allow sign slips only) leading to a remainder in p and q which is set = -6	M1				
	p + q = -5 *	Correct equation with no errors.	A1				
			(2)				
(b)	$2(-2)^3 - 3(-2)^2 + p(-2) + q = 0$ A clear attempt at $f(-2) = 0$ or $f(2) = 0$. May be implied by a correct equation but if the equation is incorrect and no method is shown score M0.						
	$p+q=-5, q-2p=28$ $\Rightarrow p=-11, q=6$	Solves simultaneously. Must be using $p + q = -5$ and their linear equation in p and q and must reach values for both p and q .	M1				
		Correct values	A1				
			(3)				

Autumn 2018

Mathematics C12

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

8(c)		Divides $f(x)$ by $(x+2)$ or compares			
	$\frac{2x^3 - 3x^2 - 11x + 6}{x + 2} = 2x^2 + kx + \dots$	coefficients or uses inspection and obtains at least the first 2 terms of a quadratic with $2x^2$ as the first term and an x term. Must be seen in (c).	M1		
	$2x^2 - 7x + 3$	Correct quadratic	A1		
	$2x^2 - 7x + 3 = (2x - 1)(x - 3)$	Attempts to factorise their 3 term quadratic expression. The usual rules apply here so if $2x^2 - 7x + 3$ is factorised as $\left(x - \frac{1}{2}\right)(x - 3)$, this scores M0 unless the factor of 2 appears later. Dependent on the first M mark.	dM1		
	$f(x) = (x+2)(2x-1)(x-3)$ Or e.g. $f(x) = 2(x+2)(x-\frac{1}{2})(x-3)$	Fully correct factorisation. Must see all factors together on one line and no commas in between.	A1		
			(4)		
	Answers with no 2^{-3} 2^{-2} 11 11 11 11 11 11 11 1	8 ()			
	$2x^3 - 3x^2 - 11x + 6 = (x+2)(2x^2 - 11x + $				
	$2x^3 - 3x^2 - 11x + 6 = 2(x+2)(x+2)$	$(x-\frac{1}{2})(x-3)$ scores full marks			
	$2x^3 - 3x^2 - 11x + 6 = (x+2)(x-\frac{1}{2})(x-\frac{1}{2})$	-3) scores a special case M1A1M0A0			
	Just writing down roots of the cubic scores no marks.				
	Ignore any "= 0" and also ignore any subs	- · · · · · · · · · · · · · · · · · · ·			
	factorised for	orm is seen.	Total 9		
			1 Otal 9		

■ Past Paper

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

_(eave	
հ	ank	

			blank
9.	A car manufacturer currently makes 1000 cars each week.		Oldin
	The manufacturer plans to increase the number of cars it makes each week.		
	The number of cars made will be increased by 20 each week from 1000 in week 1, to 1020 in week 2, to 1040 in week 3 and so on, until 1500 cars are made in week <i>N</i> .		
	(a) Find the value of <i>N</i> .		
		(2)	
	The car manufacturer then plans to continue to make 1500 cars each week.		
	(h) Find the total annulus of some that will be used in the first 50 sweeks		
	(b) Find the total number of cars that will be made in the first 50 weeks starting from and including week 1.		
	Starting from and including week 1.	(5)	
		(3)	

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question Number	Scheme	Notes	Marks
9(a)	$1000 + (N-1) \times 20 = 1500 \Rightarrow N = \dots$	Uses a correct term formula with $a = 1000$, $d = 20$ and the 1500 in an attempt to find N . Alternatively calculates $\frac{1500-1000}{20}+1$.	M1
	(N =) 26	Cao (Allow <i>n</i> or any other letter for <i>N</i>)	A1
	Uses a correct arithmetic progression, so con 1500 and so concludes $(N=)$ 26	siders 1000, 1020, 1040 etc. to reach	
	Correct answer only sco	ores both marks	
			(2)
(b)	$S_{26} = \frac{1}{2} ("26") [2(1000) + ("26"-1) \times 20]$ or $S_{26} = \frac{1}{2} ("26") [1000 + 1500]$	Correct attempt at AP sum with $n = \text{their } N, a = 1000, d = 20 \text{ or } n = \text{their } N, a = 1000, l = 1500$	M1
	=32 500	Correct sum (may be implied)	A1
	constant terms = $(50 - N) \times 1500$ Or constant terms = $(50 - (N - 1)) \times 1500$	Attempts $(50-N)\times1500$ or $(50-(N-1))\times1500$. So if $n=26$ was used for the previous M, allow the use of 24 or 25 here.	M1
	$S_{50} = "24" \times 1500 + S_{26}$	Adds their AP sum to constant terms where 50 terms are being considered. Dependent on both previous M's.	ddM1
	= 68500	cao	A1
			(5)
(b) Way 2	$S_{26} = \frac{1}{2} ("26"-1) [2(1000) + ("26"-1-1) \times 20]$ or $S_{26} = \frac{1}{2} ("26"-1) [1000 + 1480]$	Correct attempt at AP sum with $n = \text{their } N - 1$, $a = 1000$, $d = 20$ or $n = \text{their } N - 1$, $a = 1000$, $l = 1500$	M1
	= 31 000	Correct sum (may be implied)	A1
	constant terms = $(50-(N-1))\times1500$ Or constant terms = $(50-(N-2))\times1500$	Attempts $(50-(N-1))\times1500$ or $(50-(N-2))\times1500$. So if $n=25$ was used for the previous M, allow the use of 25 or 26 here.	M1
	$S_{50} = "25" \times 1500 + S_{26}$	Adds their AP sum to constant terms where 50 terms are being considered. Dependent on both previous M's.	ddM1
	= 68500	cao	A1
			(5)
			Total 7

WMA01

This resource was created and owned by Pearson Edexcel

Important Note: Special Case

Candidates who obtain N = 25 in part (a) are allowed a full recovery in part (b) for,

$$\frac{1}{2}(25)[2\times1000 + 24\times20] = 31\ 000 = M1A1$$

$$25 \times 1500 (= 37500) = M1$$

$$31\ 000 + 37\ 500 = 68\ 500 = ddM1A1$$

Listing in (b):

Week	1	2	3	4	5	6	7	8	9	10	11	12	13
Cars	1000	1020	1040	1060	1080	1100	1120	1140	1160	1180	1200	1220	1240
Total	1000	2020	3060	4120	5200	6300	7420	8560	9720	10900	12100	13320	14560

Week	14	15	16	17	18	19	20	21	22	23	24	25	26
Cars	1260	1280	1300	1320	1340	1360	1380	1400	1420	1440	1460	1480	1500
Total	15820	17100	18400	19720	21060	22420	23800	25200	26620	28060	29520	31000	32500

Week	27	28	29		49	50
Cars	1500	1500	1500		1500	1500
Total	34000	35500	37000	•••	67000	68500

M1: Attempts the sum of either 25 or 26 terms of a series with first term 1000 and d = 20

A1: S = 31000 or 32500Then follow the scheme

WMA01

Leave blank

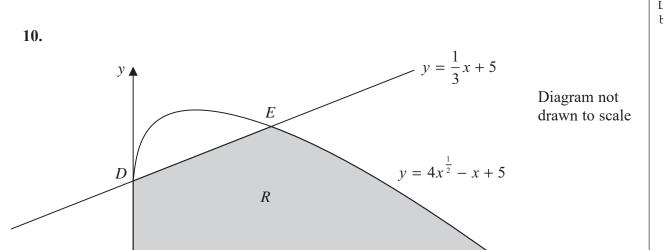


Figure 1

The finite region R, which is shown shaded in Figure 1, is bounded by the coordinate axes, the straight line *l* with equation $y = \frac{1}{3}x + 5$ and the curve *C* with equation $y = 4x^{\frac{1}{2}} - x + 5$, $x \ge 0$

The line l meets the curve C at the point D on the y-axis and at the point E, as shown in Figure 1.

(a) Use algebra to find the coordinates of the points D and E.

(4)

The curve C crosses the x-axis at the point F.

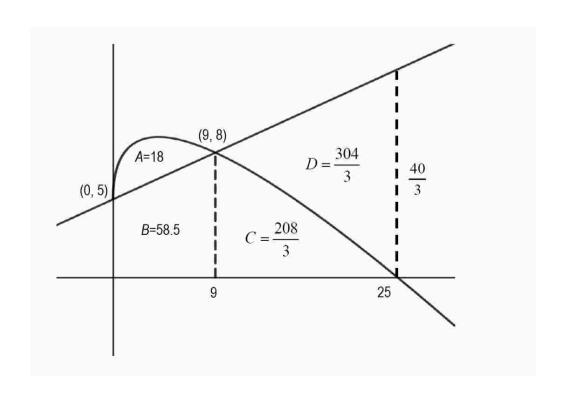
(b) Verify that the x coordinate of F is 25

(1)

(c) Use algebraic integration to find the exact area of the shaded region R.

(6)

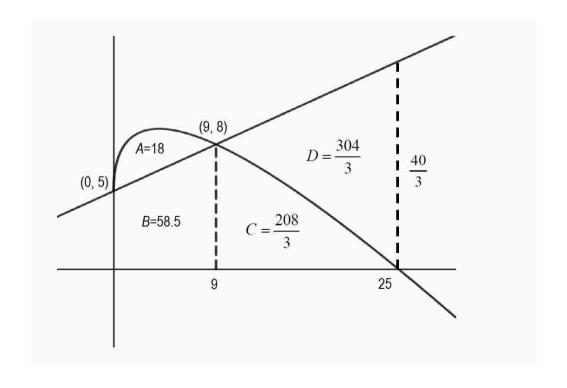
Past Paper (Mark Scheme)


www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question								
Number	Scheme	Notes	Marks					
10(a)		Sets line = curve and obtains an						
	$\frac{1}{3}x + 5 = 4x^{\frac{1}{2}} - x + 5 \Longrightarrow x = 3x^{\frac{1}{2}}$	equation of the form $\alpha x = \beta x^{\frac{1}{2}}$ or	M1					
	3	equivalent e.g. $\alpha x - \beta x^{\frac{1}{2}} = 0$						
	<i>x</i> = 9	Obtains $x = 9$ from a correct equation	A1					
	Note that $x - 3x^{\frac{1}{2}} = 0 \implies x^2 - 9x = 0$	$= 0 \Rightarrow x = 9$ is acceptable						
	(0, 5)	Correct point. Coordinates not necessary and may be seen on the diagram.	B1					
	(9, 8)	Correct point. Coordinates not necessary and may be seen as values and/or on the diagram.	A1					
			(4)					
(b)	$x = 25 \Rightarrow 4(25)^{\frac{1}{2}} - 25 + 5 = 20 - 25 + 5 = 0$	Shows F 's x coordinate is 25. Need	B1					
	So x -coordinate of F is 25	to see $4(25)^{\frac{1}{2}}$ evaluated as 4×5 or 20	Di					
	Note: This may be shown by solving $4x^{\frac{1}{2}} - x + 5 = 0$							
	Example							
	$4x^{\frac{1}{2}} - x + 5 = 0 \Rightarrow x - 4x^{\frac{1}{2}} - 5 = 0$	$0 \Longrightarrow \left(x^{\frac{1}{2}} + 1\right)\left(x^{\frac{1}{2}} - 5\right) = 0$						
	$x^{\frac{1}{2}} - 5 = 0 \Rightarrow x^{\frac{1}{2}} = 3$ Example	, ==						
	$4x^{\frac{1}{2}} - x + 5 = 0 \Rightarrow 4x^{\frac{1}{2}} = x - 4x^$							
	$x^2 - 26x + 25 = 0 \Rightarrow (x - 25)$							
	(In this case, ignore any reference to the oth							
	(in this case, ignore any reference to the on	let 100t provided x 23 is obtained)	(1)					
(c)	The first 2 marks (M1A1) in (c) are to be smethod used to find the							
	$\int \left(4x^{\frac{1}{2}} - x + 5\right) \mathrm{d}x = \frac{1}{2}$							
	or $ \int \left(4x^{\frac{1}{2}} - x + 5 - \left(\frac{1}{3}x + 5\right)\right) dx = \int \left(\frac{1}{3}x + 5\right) dx$	$\left(4x^{\frac{1}{2}} - \frac{4}{3}x\right) dx = \frac{8}{3}x^{\frac{3}{2}} - \frac{2}{3}x^{2}$ at least once applified. Score as soon as the correct	M1A1					
	Award this mark even if mistakes have \pm (curve-line) as long as the subse	- · · ·						

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel


WAY 1: Area B + Area C Requires:			
1	$\left[\frac{8}{3}x^{\frac{3}{2}} - \frac{x^2}{2} + 5x\right]_{0}^{25} = \frac{875}{6} - \frac{1}{6}$	Uses the limits 25 and "9" in their integrated (changed) curve and subtracts either way round.	
2	Area of trapezium = $ \frac{("8"+5)}{2} \times "9" = 58.5 $ or Triangle + Rectangle $= "5" \times "9" + \frac{"5" \times "9"}{2} = 58.5$	Correct trapezium area method or may be done as triangle + rectangle or as $\int_0^{99^n} \left(\frac{1}{3}x + 5\right) dx = \left[\frac{1}{6}x^2 + 5x\right]_0^{99^n} = 58.5$ Must be correct integration and correct use of limits in this case.	
	Uses process 1 or	process 2	M1
Uses process 1 and process 2 (Even if other areas have been calculated) Dependent on the previous M			dM1
$R = \frac{208}{3} + 58.5 =$ Adds their areas. Dependent on all the previous M marks.			dM1
	$=\frac{767}{6}$	cao	A1
			(6)

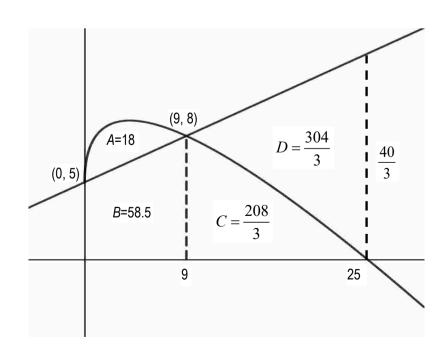
Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

WAY 2: Area (A+B+C) - Area A Requires:		
$ \begin{bmatrix} \frac{8}{3}x^{\frac{3}{2}} - \frac{x^2}{2} + 5x \end{bmatrix}_0^{25} = \frac{1000}{3} - \frac{625}{2} + 125 $ Uses the limits 25 and 0 in their integrated (changed) curve and subtracts either way round.		
Area between line and curve $= \int_0^{9^n} \left(4x^{\frac{1}{2}} - \frac{4}{3}x\right) dx = \left[\frac{8}{3}x^{\frac{3}{2}} - \frac{2}{3}x^2\right]_0^{9^n} = 18$ Uses the limits "9" and 0 on their integrated (changed) $\pm (\text{curve-line}) \text{ and subtracts either way round.}$		
Uses process 1 or process 2	M1	
Uses process 1 and process 2 (Even if other areas have been calculated) Dependent on the previous M		
$R = \frac{875}{6} - 18 =$ Subtracts their areas. Dependent on all the previous M marks.	dM1	
$R = \frac{875}{6} - 18 = \dots$ Subtracts their areas. Dependent on all the previous M marks. $= \frac{767}{6}$ cao	A1 (6)	

Past Paper (Mark Scheme)

This resource was created and owned by Pearson Edexcel


WMA01

(6)

Area (B+C+D) - Area DRequires: Uses the limits 25 and "9" in $\left[\left[\frac{2}{3}x^2 - \frac{8}{3}x^{\frac{3}{2}} \right]_{00}^{25} = \frac{250}{3} + 18 = \frac{304}{3}$ their integrated (changed) \pm (curve-line) and subtracts either way round. Correct trapezium area method Area of trapezium = or may be done as triangle + $\frac{\left("5" + \frac{1}{3} \times 25 + 5\right)}{2} \times 25 = \frac{1375}{6}$ rectangle or as $\int_0^{25} \left(\frac{1}{3}x + 5\right) dx = \left[\frac{1}{6}x^2 + 5x\right]_0^{25} = \frac{1375}{6}$ Triangle + Rectangle = "5"×25 + $\frac{25 \times \frac{1}{3} \times 25}{2}$ = $\frac{1375}{6}$ Must be correct integration and correct use of limits in this case. Uses process 1 or process 2 M1 Uses process 1 and process 2 (Even if other areas have been calculated) dM1 Dependent on the previous M Subtracts their areas. Dependent on dM1all the previous M marks. A1 cao

No algebraic integration seen:

Candidates may perform the integration on their calculators. In such cases a maximum of 2 marks is available: **M0A0M1dM0A0** if the values for the areas for the M2 and M3 follow from their values found in part (a) (you may need to check)

WMA01

Leave blank

11. The equation $7x^2 + 2kx + k^2 = k + 7$, where k is a constant, has two distinct real roots.

(a) Show that k satisfies the inequality

$$6k^2 - 7k - 49 < 0$$

(4)

(b) Find the range of possible values for k.

(4)

32

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Mathematics C12

Question Number	Scheme	Notes	Marks
11(a)	$7x^2 + 2kx + k^2 - k - 7 = 0$ or $a = 7, b = 2k, c = k^2 - k - 7$		
	Attempts to collect terms to one side so look for $7x^2 + 2kx + k^2 \pm k \pm 7 (= 0)$		
	(the "= 0" may be implied) or writes down values for "a", "b" and "c" where " a " = 7,		
	"b" = $2k$ and "c" = $k^2 \pm k \pm 7$ which may E.g.	y also be implied by their work. Use of $b^2 - 4ac$ with $a = \pm 7$, $b = \pm 2k$	
	$(2k)^2 - 4 \times 7 \times (k^2 - k - 7)$ and $c = \pm k^2 \pm k \pm 7$. May be seen as		
	$(2k)^2 - 4 \times 7 \times (k^2 - k - 7) > 0$	part of e.g. $b^2 = 4ac$ but not as part of the quadratic formula – the	M1
	$(2k)^2 - 4 \times 7 \times (k^2 - k - 7) < 0$	$b^2 - 4ac$ must be 'extracted'. Condone missing brackets for this	1411
	$(2k)^2 = 4 \times 7 \times (k^2 - k - 7)$	mark provided the intention is clear. There must be no x 's.	
	$(2k)^2 - 4 \times 7 \times (k^2 -$	-k-7) > 0	
	Obtains a correct quadratic inequality that is no recovered from missing brackets around the "2" this mark if there was an incorrect rearrangement of the correct	k " or the " $k^2 - k - 7$ " but do not allow nt of $7x^2 + 2kx + k^2 = k + 7$ earlier	A1
	and/or incorrect values of any of "a", "b" or "c" $k^2 - k + 7$ initially and then using "c" as $k^2 - k - 1$		
	$6k^2 - 7k - 49$	0 < 0 *	
	Fully correct proof with no errors . This includes bracketing errors, sign errors and e.g. identifying "c" as $k^2 - k + 7$ initially and then using "c" as $k^2 - k - 7$ Starting with e.g. $7x^2 + 2kx + k^2 - k - 7 > 0$ or $7x^2 + 2kx + k^2 - k - 7 < 0$ would also be an error.		A1*
	would also be all effor.		
(b)	$6k^2 - 7k - 49 = 0 \Rightarrow k = \dots$	Attempt to solve the 3TQ from part (a) to obtain 2 values for <i>k</i> . (see general guidance for solving a 3TQ). May be implied by their values but if no working is shown and the roots are incorrect, score M0 here.	M1
	$k = -\frac{7}{3}, \frac{7}{2}$	Correct values. May be seen as part of their inequalities. Allow $k = \frac{7 \pm 35}{12}$	A1
	7 7 (77) 7 7	Attempt inside region for their critical values. Do not award simply for diagram or table.	M1
	$-\frac{7}{3} < k < \frac{7}{2} \text{ or } \left(-\frac{7}{3}, \frac{7}{2}\right) \text{ or } k > -\frac{7}{3} \text{ and } k < \frac{7}{2}$	Cao. ($k > -\frac{7}{3}$, $k < \frac{7}{2}$ is A0 i.e. must	A 1
		see "and" if regions given separately)	A1
	Note that $-\frac{7}{3} < k < \frac{7}{2}$ with no working scores full marks in part (b)		
	Note: Allow x to be used in (b) rather than A		
			(4)
			Total 8

WMA01 Leave

blank

12. (a) Show that the equation

$$6\cos x - 5\tan x = 0$$

may be expressed in the form

$$6\sin^2 x + 5\sin x - 6 = 0$$

(3)

(b) Hence solve for $0 \leqslant \theta < 360^{\circ}$

$$6\cos(2\theta - 10^{\circ}) - 5\tan(2\theta - 10^{\circ}) = 0$$

giving your answers to one decimal place.

(Solutions based entirely on graphical or numerical methods are not acceptable.)

(5)

Autumn 2018

Mathematics C12

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question Number	Scheme	Notes	Marks
12(a)	$6\cos x - 5\tan x = 6\cos x - 5\frac{\sin x}{\cos x}$	Uses $\tan x = \frac{\sin x}{\cos x}$. This may be implied by e.g. $6\cos x - 5\tan x = 0 \Rightarrow 6\cos^2 x - 5\sin x = 0$	M1
	$6\cos^2 x - 5\sin x = 6(1-\sin^2 x) - 5\sin x$	Uses $\cos^2 x = 1 - \sin^2 x$	M1
	$6\sin^2 x + 5\sin x - 6 = 0*$	Correct proof with no notational errors, missing brackets, missing variables, $\sin x^2$ instead of $\sin^2 x$ etc. Allow the proof to be in terms of a different variable but the final equation must be in terms of x . If everything is moved to one side, allow the "= 0" to appear at the end.	A1*
	Allow to work backwards:		
	$6\sin^2 x + 5\sin x - 6 = 0 \Longrightarrow$	$-6\left(\sin^2 x - 1\right) + 5\sin x = 0$	
	$-6\cos^2 x + 5\sin x = 0$ M1: Uses $\cos^2 x = 1 - \sin^2 x$		
	$-6\cos x + \frac{5\sin x}{\cos x} = 0 =$		
	M1: Uses ta	COS X	
	A1: $6\cos x - 5\tan x = 0$ Achieves this result with no errors as described above		
	Achieves this result with no	o errors as described above	(3)
	$6\sin^2 x + 5\sin x - 6 = 0 \Rightarrow$ $-6\cos^2 x +$ M1: Uses $\cos^2 x +$ $-6\cos x + \frac{5\sin x}{\cos x} = 0 =$ M1: Uses ta A1: $6\cos x +$	variable but the final equation must be in terms of x . If everything is moved to one side, allow the "= 0" to appear at the end. k backwards: $6(\sin^2 x - 1) + 5\sin x = 0$ $5\sin x = 0$ $2x = 1 - \sin^2 x$ $6\cos x + 5\tan x = 0$ $\sin x = \frac{\sin x}{\cos x}$ $-5\tan x = 0$	

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Mathematics C12

12(1)	Г	A	
12(b)		Attempt to solve the given quadratic for	
		$\sin x$ or for $\sin(2\theta-10^\circ)$ or e.g. y or	
	$6\sin^2 x + 5\sin x - 6 = 0 \Rightarrow \sin x = \dots$	even x. Allow this mark if their quadratic	M1
		is a clear mis-copy e.g. if they attempt to	1411
		solve $6\sin^2 x - 5\sin x - 6 = 0$ having	
		previously obtained $6\sin^2 x + 5\sin x - 6 = 0$	
		Correct value (Ignore how they reference	
	$\sin x = \frac{2}{3} \text{ or } \sin(2\theta - 10^{\circ}) = \frac{2}{3}$	it so just look for $\frac{2}{3}$). The other root can	A1
	3	be ignored whether it is correct or	
		incorrect.	
		Finds arcsin of their 2/3. May be implied	
		41.81 or by their value of $\sin^{-1}(\frac{2}{3})$ and	
	$2\theta - 10^{\circ} = \sin^{-1}\left(\frac{2}{3}\right) = \dots \Rightarrow \theta = \dots$	attempts $\frac{\sin^{-1}\left(\frac{2}{3}\right)\pm 10}{2}$. Their $\sin^{-1}\left(\frac{2}{3}\right)$	M1
		must be a value and not just $\sin^{-1}("\frac{2}{3}")$.	
		May be implied by sight of 25.9°	
		Awrt two correct angles	A1
		All four angles and allow awrt the	
	$(\theta = 25.9^{\circ}, 74.1^{\circ}, 205.9^{\circ}, 254.1^{\circ})$	answers shown. Ignore answers outside	
	(0 -)23.7, 77.11, 203.7, 237.1	the range (0, 360°) but withhold this	A1
		mark for extra answers in range.	
		(Degree symbols not required)	
			(5)
			Total 8

WMA01

blank

VMA01 Leave

13. (i) Find the value of *x* for which

$$4^{3x+2} = 3^{600}$$

giving your answer to 4 significant figures.

(3)

(ii) Given that

$$\log_a (3b-2) - 2\log_a 5 = 4, \quad a > 0, \ a \neq 1, \ b > \frac{2}{3}$$

find an expression for b in terms of a.

(4)

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Mathematics C12

۱۸/	N /I /	۱0۱
v v	IVI <i>T</i>	11 / 1

Overtica		1	
Question Number	Scheme	Notes	Marks
13(i)	$\log 4^{3x+2} = (3x+2)\log 4(\text{allow } 3x + 2\log 4)$ $\log 3^{600} = 600\log 3$ $\log_4 4^{3x+2} = 3x + 2$ $\log_3 3^{600} = 600$ $3x + 2 = \log_4 3^{600}$	Evidence of the application of the power law of logarithms or the definition of a logarithm. This is independent of any other working – see examples. Generally this is for e.g. $\log_x y^k = k \log_x y$ or $\log_x x^k = k$ or $\log y^k = k \log y$ etc. where x, y and k are any variables/numbers.	M1
	Examples: $x = \frac{1}{3} \left(\frac{600 \log 3}{\log 4} - 2 \right)$ or $x = \frac{600 \log_4 3 - 2}{3}$ or $x = \frac{\frac{600}{\log_3 4} - 2}{3}$	This mark is for a correct expression or a correct value for x . Note that it must be an expression that can be evaluated e.g. $x = \frac{\log_4 3^{600} - 2}{3}$ is A0. May be implied by awrt 158 following correct work.	A1
	x = 157.8	Cao (Must be this value not awrt)	A1
			(3)
(ii)	$2\log_a 5 = \log_a 25 \text{ or } \log_a 5^2$		B1
	$\log_a (3b-2) - \log_a 25 = \log_a \frac{(3b-2)}{25}$ or $\log_a 25 + \log_a a^4 = \log_a 25a^4$	Correct use of subtraction or addition rule	M1
	$a^{4} = \frac{3b - 2}{25}$ $b = \frac{25a^{4} + 2}{3}$	Removes logs correctly. Dependent on the previous M.	dM1
	$b = \frac{25a^4 + 2}{3}$	Cao oe e.g. $b = \frac{25a^4}{3} + \frac{2}{3}$	A1
			(4)
	Special Ca $\log_a (3b-2) - \log_a 25 = \log_a$	$\frac{25}{3b-2} \Rightarrow a^4 = \frac{25}{3b-2}$	
	Scores B1M0c	JIVI I AU	Total 7
			,

WMA01

blank

14. The circle *C* has equation

$$x^2 + y^2 + 16y + k = 0$$

where k is a constant.

(a) Find the coordinates of the centre of C.

(2)

Given that the radius of *C* is 10

(b) find the value of k.

(2)

The point A(a, -16), where a > 0, lies on the circle C. The tangent to C at the point A crosses the x-axis at the point D and crosses the y-axis at the point E.

(c) Find the exact area of triangle ODE.

(7)

Autumn 2018

Mathematics C12

WMA01

(2)

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question Number	Scheme	Notes	Marks
14	Mark (a)	and (b) together	
(a)	(0, -8)	x = 0 or $y = -8(May be seen on a sketch)x = 0$ and $y = -8(May be seen on a sketch)$	B1 B1
			(2)
(b)	Uses 64, 100 and <i>k</i> (r	not k^2) to obtain a value for k	M1
	k = -36	cao	A1

k = -36 scores both marks

Autumn 2018 www.mystudybro.com
Past Paper (Mark Scheme) This resource was created and owned by Pearson Edexcel

		T	1
14(c)	$y = -16 \Rightarrow a = 6$	Correct <i>x</i> -coordinate. Allow $x = 6$ or just sight of 6. May be seen on a sketch.	B1
	$m_{N} = \frac{-16+8}{6-0} \left(= -\frac{4}{3} \right)$ or $m_{N} = \frac{-16+8}{a-0} \left(= -\frac{8}{a} \right)$	Correct attempt at gradient using the centre and their A. Allow one sign slip. If they use O for the centre, this is M0. Allow if in terms of a i.e. if they haven't found or can't find a.	M1
	$m_T = -1 \div " - \frac{4}{3}" = \dots$ or $m_T = -1 \div " - \frac{8}{a}" = \dots$	Correct use of perpendicular gradient rule. Allow if in terms of <i>a</i> .	M1
	Alternative by implicit	t differentiation:	
	Note that there is no penalty for a		
	$x^2 + y^2 + 16y + k = 0 \Rightarrow 2x$	$+2y\frac{\mathrm{d}y}{\mathrm{d}x} + 16\frac{\mathrm{d}y}{\mathrm{d}x} = 0$	
	M1 for $\alpha x + \beta y \frac{dy}{dz}$		
	$2(6) + 2(-16)\frac{dy}{dx} + 16\frac{dy}{dx} = 0 \Rightarrow \frac{dy}{dx} = \frac{12}{16}$		
	M1 for substituting $x = 6$ or $x = a$ and $y = -16$ to find the gradient		
	from differentiation that yielded 2 terms in $\frac{dy}{dx}$		
	$y+16 = \frac{3}{4}(x-"6")$ or $y+16 = \frac{a}{8}(x-"6")$ $x = 0 \Rightarrow y = -\frac{41}{2}, \ y = 0 \Rightarrow x = \frac{82}{3}$	Correct straight line method using a gradient which is not the radius gradient and their A or $(a, -16)$. Allow a gradient in terms of a .	M1
	$x = 0 \Rightarrow y = -\frac{41}{2}, \ y = 0 \Rightarrow x = \frac{82}{3}$	Correct values	A1
	$Area = \frac{1}{2} \times \frac{41}{2} \times \frac{82}{3}$	Correct method for area using vertices of the form $(0, 0)$, $(X, 0)$ and $(0, Y)$ where X and Y are numeric and have come from the intersections of their tangent with the axes. Allow negative lengths here. Dependent on the previous M mark.	d M1
	$= \frac{1681}{6} \text{ or } 280\frac{1}{6}$ or $280.1\dot{6} \text{ (clear dot over 6)}$	Cao. Must be positive and may be recovered from sign errors on $-\frac{41}{2}$ and/or $\frac{82}{3}$ but must be from a correct tangent equation.	A1
			(7)
			Total 11
	1	I	

blank

Past Paper

Leave

15.

This resource was created and owned by Pearson Edexcel

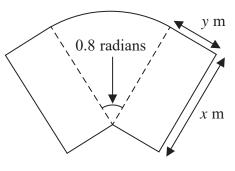


Figure 2

Figure 2 shows a plan for a garden.

The garden consists of two identical rectangles of width y m and length x m, joined to a sector of a circle with radius x m and angle 0.8 radians, as shown in Figure 2.

The area of the garden is 60 m².

(a) Show that the perimeter, P m, of the garden is given by

$$P = 2x + \frac{120}{x} \tag{5}$$

(b) Use calculus to find the exact minimum value for P, giving your answer in the form $a\sqrt{b}$, where a and b are integers.

(4)

(c) Justify that the value of *P* found in part (b) is the minimum.

(2)

Autumn 2018

Mathematics C12

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question Number	Scheme	Notes	Marks
15(a)	(Arc length =) 0.8x Correct expression		B1
	P = 2x + 4y + 0.8x	$P = \alpha x + \beta y + "0.8x", \alpha, \beta \neq 0$	M1
	This may be implied by e.g. P	y = 2x + 4 (their y) + 0.8x	
	$2xy + \frac{1}{2}(0.8)x^2 = 60$ Correct equation for the area		B1
	$y = \frac{60 - 0.4x^2}{2x} \Rightarrow P = 4\left(\frac{60 - 0.4x^2}{2x}\right) + 2.8x$	Makes <i>y</i> the subject and substitutes	M1
	$P = \frac{120}{x} + 2x^*$	Obtains printed answer with no errors with $P =$ or Perimeter = appearing at some point.	A1*
	Note that it is sufficient to go from $P = 4\left(\frac{60 - 0.4x^2}{2x}\right) + 2.8x$ to $P = \frac{120}{x} + 2x$ *		
			(5)

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

15(b)	Mark (b) and (c) tog		
	Allow e.g. $\frac{dy}{dx}$ for $\frac{dP}{dx}$ and/or $\frac{d^2y}{dx^2}$ for $\frac{d^2P}{dx^2}$		
	$\frac{\mathrm{d}P}{\mathrm{d}x} = 2 - \frac{120}{x^2}$ Cor	rrect derivative	B1
	$2 - \frac{120}{x^2} = 0 \Rightarrow x = \sqrt{60}$	$\frac{d}{dx} = 0$ and solves for x . Must be fully rect algebra for their $\frac{dP}{dx} = 0$ which olvable.	M1
	$P = \frac{120}{100} + 2\sqrt{60}$ has	ostitutes into P , a positive x which come from an attempt to solve if $\frac{dP}{dx} = 0$	M1
	- '\'	rrect exact answer. Cso.	A1
	Note that if $\frac{dP}{dx} = 2 + \frac{120}{x^2}$ is obtained, this could s	score a maximum of B0M0M1A0	
	if a positive value of x is subs	stituted into P.	(4)
(c)			()
	$\left(\frac{d^2P}{dx^2}\right) = \frac{240}{x^3} = \frac{240}{\left(\sqrt{60}\right)^3}$ $\frac{x^n - (allows)}{(allows)}$ of x reference derivatives and x and x are x and x and x are x and x ar	empts the second derivative $\rightarrow x^{n-1}$ seen at least once ow $k \rightarrow 0$ as evidence) and then estitutes at least one positive value of from their $\frac{dP}{dx} = 0$ or makes exerce to the sign of the second eviative provided they have a sitive x .	M1
	$\left(\frac{\mathrm{d}^2 P}{\mathrm{d}x^2}\right) = \frac{240}{\left(\sqrt{60}\right)^3} \Rightarrow \frac{\mathrm{d}^2 P}{\mathrm{d}x^2} > 0 \therefore \text{ minimum}$ Requires a correct second derivative and the correct value of x . There must be a reference to the sign of the second derivative. If x is substituted and then $\frac{\mathrm{d}^2 P}{\mathrm{d}x^2}$ is evaluated incorrectly allow this mark if the other conditions are met. If x is not substituted then the reference to $\frac{\mathrm{d}^2 P}{\mathrm{d}x^2}$ being positive must also include a reference to the fact that x is positive.		A1
	Allow alternatives e.g. considers values of P either side of $\sqrt{60}$ or		
	values of $\frac{dP}{dx}$ either side of $\sqrt{60}$ can score M1		
	and then A1 if a full reason and co	onclusion is given.	(2)
			Total 11

blank

Leave

16. The first three terms of a geometric series are $(k + 5)$, k and $(2k - 24)$ respectively,
where k is a constant.

(a) Show that $k^2 - 14k - 120 = 0$

(3)

(b) Hence find the possible values of k.

(2)

- (c) Given that the series is convergent, find
 - (i) the common ratio,
 - (ii) the sum to infinity.

(4)	

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question Number	Scheme	Notes	Marks
16(a)	Examples: $\frac{2k-24}{k} = \frac{k}{k+5}$ or $\frac{k+5}{k} = \frac{k}{2k-24}$ or $(2k-24)(k+5) = k^2$	Correct method. I.e. a method that uses the fact that the 3 terms are in geometric progression to establish an equation in <i>k</i> .	M1
	$(2k-24)(k+5) = 2k^2 - 14k - 120$	Expands $(2k-24)(k+5)$. Must be an attempt at the full expansion but allow the k terms to be combined. Dependent on the first M .	d M1
	$2k^2 - 14k - 120 = k^2 \Rightarrow k^2 - 14k - 120 = 0*$	Correct solution with no errors including bracketing errors e.g. $2k-24(k+5)=$	A1*
			(3)
(b)	$(k+6)(k-20)=0 \Rightarrow k=$	Attempts to solve the given quadratic. See General Guidance.	M1
	k = -6, 20	Correct values	A1
			(2)
(c)(i)	$r = \frac{"20"}{"20"+5}$ or $r = \frac{2 \times "20"-24}{"20"}$	Correct attempt at <i>r</i> . Allow this to score for any of their <i>k</i> values.	M1
	$r = \frac{4}{5}$ oe	Correct r from using $k = 20$. Allow this mark even if the 'other' value of r is also calculated. Allow unsimplified e.g. $\frac{20}{20+5}$	A1
(ii)	$a = "20" + 5 \Rightarrow S_{\infty} = \frac{"25"}{1 - "\frac{4}{5}"}$	Attempts to find a and S_{∞} with $ r < 1$	M1
	$S_{\infty} = 125$	Cao with no other values – if other values are found they must be clearly rejected and 125 "chosen".	A1
			(4)
			Total 9