This resource was	created and	owned by Pearson Edexcel

۱۸/	'N Λ Λ	N1
v v		υı

Surname	Othe	r names
Pearson Edexcel nternational Advanced Level	Centre Number	Candidate Number
(ore Matr	nomati	
Advanced Subsidia	ry	
Advanced Subsidia Monday 10 October 2016 - Time: 2 hours 30 minutes	- Morning	Paper Reference WMA01/01

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B). Coloured pencils and highlighter pens must not be used.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information

- The total mark for this paper is 125.
- The marks for **each** question are shown in brackets – use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over 🕨

(5)

WMA01 Leave

blank

1.

P2016 www.mystudybro.com
This resource was created and owned by Pearson Edexcel

$$f(x) = 3x^2 + x - \frac{4}{\sqrt{x}} + 6x^{-3}, x > 0$$
Find $\int f(x) dx$, simplifying each term.

DO NOT WRITE IN THIS AREA

www.mystudybro.com This resource was created and owned by Pearson Edexcel

WMA01

Questio	n Scheme	Marks
1.	$f(x) = 3x^{2} + x - 4x^{-\frac{1}{2}} + 6x^{-3}$	
	$\int \left(3x^2 + x - 4x^{-\frac{1}{2}} + 6x^{-3}\right) dx = \frac{3x^3}{3} + \frac{x^2}{2} - \frac{4x^{\frac{1}{2}}}{\frac{1}{2}} + \frac{6x^{-2}}{-2}(+c)$	M1 A1A1A1
	$= x^3 + \frac{x^2}{2} - 8x^{\frac{1}{2}} - 3x^{-2} + c$	A1
		[5]
		5 marks
	Notes	e marns
M1: A A1: T 3.	tempt to integrate original $f(x)$ - one power increased $x^n \to x^{n+1}$ vo of the four terms in x correct un simplified or simplified- (ignore no constant here). hey may be listed. $x^2 \to 3\frac{x^3}{2}$ is acceptable for an un simplified term BUT $3x^2 \to 3\frac{x^{2+1}}{2+1}$ isn't	
А1. Т	5 2+1 Tree terms correct (may be) unsimplified. They may be listed separately	
A1: A	I four terms correct (may be) unsimplified on a single line.	

A1 cao: All four terms correct simplified with constant of integration on a single line. You may isw after sight of correct answer.

Autumn	2016 This resource y	www.mystudybro.com	Mathematics C12
asırapel			Leave
2.	Find, giving your answer to 3 s which	significant figures where appropriate, the v	value of x for
	(a) $7^{2x} = 14$		
			(3)
	(b) $\log_5(3x+1) = -2$		(2)
4			

DO NOT WRITE IN THIS AREA

www.mystudybro.com This resource was created and owned by Pearson Edexcel

Mathematics C12 WMA01

Question	Scheme	Marks			
2.	(a) $2x \log 7 = \log 14$ or $x \log 49 = \log 14$ or $2x = \log_7 14$	M1			
	$x = \frac{\log 14}{2\log 7}$ = awrt 0.678	M1A1 (3)			
	(b) $3x+1=5^{-2}$ So $x=-\frac{8}{32}$ or $=0.32$	M1 A1			
	$30x = -\frac{1}{25}$ or -0.52	(2)			
		5 marks			
	Notes				
 (a) M1: Uses logs and brings down <i>x</i> correctly M1: Makes <i>x</i> the subject correctly. This must follow a method that did involve taking logs A1: Accept awrt 0.678 (N.B. Correct answer with no working implies two previous marks) 					
(b) M1: Uses A1: Corre	powers correctly to undo log. Accept $3x+1=5^{-2}$ or equivalent such as $3x+1=0.04$ ct answer (Correct answer implies method mark). Accept – 0.320				

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

This resource was created and owned by Pearson Edexcel Past Paper WMA01 Leave blank Answer this question without the use of a calculator and show your method clearly. 3. (i) Show that $\sqrt{45} - \frac{20}{\sqrt{5}} + \sqrt{6}\sqrt{30} = 5\sqrt{5}$ (2) (ii) Show that $\frac{17\sqrt{2}}{\sqrt{2}+6} = 3\sqrt{2} - 1$ (3) 6 P 4 8 2 5 3 A 0 6 4 8

Autumn 2	016	www.mystudybro.com	Mathematics C12	
Question		Scheme	Marks	
3 (i)		20		
	√45 -	$\frac{23}{\sqrt{5}} + \sqrt{6}\sqrt{30}$		
	$=\sqrt{9}\sqrt{5}$	$-\frac{20\sqrt{5}}{5} + \sqrt{6}\sqrt{6}\sqrt{5} = 3\sqrt{5} - 4\sqrt{5} + 6\sqrt{5}$		
		$\sqrt{5}\sqrt{5}$	MI	
		$=5\sqrt{5}$	A1*	
			[2]	
(ii)	17			
	LHS = $\frac{17}{\sqrt{2}}$	$\frac{\sqrt{2}(\sqrt{2}-6)}{+6)(\sqrt{2}-6)}$	M1	
	17	$7 \times 2 - 17 \times 6\sqrt{2}$		
	=	<u> </u>	A1	
	_ 34	$\frac{4-102\sqrt{2}}{2}$ = $2\sqrt{2}$ 1*	A 1 *	
	_	-34 $-3\sqrt{2}$	[3]	
			5 marks	
(:)		Notes		
(1)				
M1: Show	ws at least on	e term on LHS as multiple of $\sqrt{3}$ with a correct intermediat	te step	
Look	x for $\sqrt{45} = \sqrt{20}$	$\sqrt{9} \times \sqrt{5} \text{ or } \sqrt{3} \times 3 \times 5 = 3\sqrt{5}$, or even $45 = 3 \times 3 \times 5$ or 9×5 follows $\sqrt{5}$	owed by $\sqrt{45} = 3\sqrt{5}$	
	$\frac{20}{\sqrt{5}} = \frac{2}{\sqrt{5}}$	$\frac{0\sqrt{5}}{5\sqrt{5}}$ or $\frac{20\sqrt{5}}{5} = 4\sqrt{5}$ or $\frac{4\times5}{\sqrt{5}} = 4\sqrt{5}$		
	$\sqrt{6}\sqrt{30}$	$=\sqrt{6}\sqrt{6}\sqrt{5}$ or $\sqrt{6}\sqrt{30} = \sqrt{180} = \sqrt{36 \times 5} = 6\sqrt{5}$		
	or even 1	$180 = 2 \times 2 \times 3 \times 3 \times 5$ followed by $\sqrt{180} = 6\sqrt{5}$		
A1*: All	three terms i	must have the intermediate step with $3\sqrt{5} - 4\sqrt{5} + 6\sqrt{5}$ follow	wed by $5\sqrt{5}$	
Special C	ase: Score M	[1 A0 for $\sqrt{45} - \frac{20}{\sqrt{5}} + \sqrt{6}\sqrt{30} = 3\sqrt{5} - 4\sqrt{5} + 6\sqrt{5} = 5\sqrt{5}$ without the	ne intermediate steps	
Alternativ	ve method:		1 1 1 0	
MI: Mult	tiplies all terr	ns by $\sqrt{5}$ to achieve $\sqrt{45} \times \sqrt{5} - 20 + \sqrt{5}\sqrt{6}\sqrt{30} = 5\sqrt{5}\sqrt{5}$ at 15 20 30 or 25 showing the intermediate step	nd simplifies any one of	
A1: All t	erms simplifi	ied showing the intermediate step (see main scheme on how t	to apply) followed by	
15 –	20 + 30 = 25	, and minimal conclusion eg. hence true		
(11) M1: Multi	inly numerate	or and denominator by $\sqrt{2} - 6$ or $6 - \sqrt{2}$		
	· 1·	$\frac{17 \times 2^{-1}}{17 \times 2^{-1}}$	$17 \times 6\sqrt{2}$	
A1: Multiplies out to a correct (unsimplified) answer. For example allow $=\frac{1}{2-36}$				
A1: The denominator must be simplified so $\frac{34-17\times 6\sqrt{2}}{-34}$ or similar such as $\frac{17\times 2-102\sqrt{2}}{-34}$ is seen before				
you see the given answer $3\sqrt{2}-1$. There is no need to 'split' into two separate fractions.				
Alternativ	e method:	indices the rhs by $(-) (-)$		
A1: Correct unsimplified the Accent $2 + 2 - (-1) = \sqrt{2}$				
A 1* Simplifies the to $17\sqrt{2}$ and gives a minimula method in a logic large				
AI*: Simp	onnes rhs to 1	$7\sqrt{2}$ and gives a minimal conclusion e.g. hence true or hence	$\frac{1}{(\sqrt{2}+6)} = 3\sqrt{2}-1$	

t umn 20 1 Paper	16 www.mystudybro.com This resource was created and owned by Pearson Edexcel	Mathemat	ics C12 WMA01
4	$f(x) = (x^3 - 7x^2 - 42x + 20)$		Leave blank
4.	$\Gamma(x) = 0x^2 - 7x^2 - 45x + 50$		
(a)	Find the remainder when $f(x)$ is divided by		
	(i) $2x + 1$		
	(ii) $x - 3$	(4)	
(b)	Hence factorise $f(x)$ completely.		
		(4)	
8			

Autumn 20	16 www.mystudybro.com Mathema	atics C12			
Past Paper (Ma	rk Scheme) This resource was created and owned by Pearson Edexcel	WMA01			
Question	Scheme	Marks			
4.	$f(x) = 6x^3 - 7x^2 - 43x + 30$				
(a)(i)	Attempts $f(\pm 1)$ Or Use long division as far as remainder	M1			
	$\frac{1}{2} = \frac{1}{2}$				
<pre>/ ````````````````````````````````````</pre>	Remainder = 49	AI			
(a)(11)	Attempts $f(\pm 3)$ Or Use long division as far as remainder	MI			
	Remainder $= 0$	Al			
		[4]			
(b)	$6x^{3} - 7x^{2} - 43x + 30 = (x - 3)(6x^{2} + 11x - 10)$				
		M1 A1			
		2.61			
	$(6x^2 + 11x - 10) = (ax + b)(cx + d)$ where $ac = 6^{\circ} and bd = -10^{\circ}$	MI			
	= (x-3)(2x+5)(3x-2)	A1			
		[4]			
		8 marks			
	Notes	5 mm 115			
(a)(i)		I			
M1: Attem	pts $f(\pm \frac{1}{2})$ or attempts long division $2x+1\overline{\big)6x^3-7x^2-43x+30}$ and achieves a	n numerical R			
	R				
$\mathbf{A1} \cdot \mathbf{cao} \mathbf{A}$	ccent $f\left(-\frac{1}{2}\right) = 49$ or even just 49 for both marks				
	(2) of even just 49 for both marks				
If the	candidate has attempted long division they must be stating the remainder = 49 or $R =$	49			
(a)(ii)					
M1: Attem	pts $f(\pm 3)$				
Or atte	empts long division. See above for application of this mark. This time quotient must sta	rt $6x^2$			
A1: cao A	ccept $f(3) = 0$ or even just 0 for both marks				
If the	condidate has attempted long division they must be stating the remainder $= 0$ or $R = 0$				
(b)	candidate has attempted folg division they must be starting the remainder $= 0.01 \text{ K} = 0$				
(0)	sizes (un ath a d			
wii: Recogi	insets $(x - 3)$ is factor and obtains quadratic factor with two correct terms by any correct	method.			
	$\frac{6x^2 \pm 11xx}{x-3} + \frac{3}{6}x^3 - 7x^2 - 43x \pm 30$				
If divis	ion is used look for a minimum of the first two terms $\frac{x-5}{6}$				
	$\frac{0x - 18x}{2}$				
If factor	risation is used look for correct first and last terms $6x^3 - 7x^2 - 43x + 30 = (x - 3)(6x^2 \dots x^2)$	$x \pm 10)$			
A1: Correc	t quadratic	,			
M1. Attem	nt to factorise their quadratic				
A1. can	need all three factors together. Do not negative candidates who go on to state the roots				
(5) (2)					
Allow $6(x-3)\left(x+\frac{3}{2}\right)\left(x-\frac{2}{3}\right)$ following $(x-3)(6x^2+11x-10)$					
Note: There may be candidates who just write down the factors from their GC. The question did state hence so we					
need to be c	need to be careful here and see some correct work.				
(2)(5)					
6	$6x^{3} - 7x^{2} - 43x + 30 = (x - 3)\left(x - \frac{2}{3}\right)\left(x + \frac{3}{2}\right)$ presumably from the roots is M0A0M0A0				
6.	$x^{3} - 7x^{2} - 43x + 30 = 6(x - 3)\left(x - \frac{2}{3}\right)\left(x + \frac{5}{2}\right)$ with no working can score M1A0M1A0				

DO NOT WRITE IN THIS AREA

www.mystudybro.com This resource was created and owned by Pearson Edexcel Mathematics C12 WMA01

Que	stion	Scheme	Marks		
5	5.	(a) $\left(3 - \frac{ax}{2}\right)^5 = 3^5 + {5 \choose 1} 3^4 \cdot \left(-\frac{ax}{2}\right) + {5 \choose 2} 3^3 \cdot \left(-\frac{ax}{2}\right)^2 + {5 \choose 3} 3^2 \cdot \left(-\frac{ax}{2}\right)^3 \dots$ = 243 - $\frac{405}{2} ax + \frac{135}{2} a^2 x^2 - \frac{45}{2} a^3 x^3$	M1 B1, A1, A1		
		(b) $\frac{405}{2}a = \frac{45}{4}a^3$	[4] M1		
		$a^2 = \frac{810}{45} = 18$ or equivalent $a = 3\sqrt{2}$	A1 A1 [3]		
		Notos	7 marks		
(9)		notes			
(a) M1: 7	The me	thod mark is awarded for an attempt at Binomial to get the second and/or third and/or fo	ourth term.		
7	Zou nee	and to see the correct binomial coefficient combined with correct power of r e.g. $\binom{5}{2}$			
-		Let to see the correct binomial coefficient combined with correct power of x. e.g. $\binom{2}{2}$. x ²			
	Condo	ne bracket errors. Accept any notation for ${}^{5}C_{1}$, ${}^{5}C_{2}$ and ${}^{5}C_{3}$, e.g. $\begin{pmatrix} 5\\1 \end{pmatrix}$, $\begin{pmatrix} 5\\2 \end{pmatrix}$ and $\begin{pmatrix} 5\\3 \end{pmatrix}$			
	or 5, 1	0 and 10 from Pascal's triangle.			
	The ma	rk can be applied in the same way if 3^5 is taken out as a factor.			
B1:]	For the	first term of 243. (writing just 3^5 is B0).			
A1:	A1: is cao and is for two correct and simplified terms from $-\frac{405}{2}ax$, $+\frac{135}{2}a^2x^2$ and $-\frac{45}{2}a^3x^3$				
	Allow two correct from $-\frac{405}{2}(ax)$, $+\frac{135}{2}(ax)^2$ and $-\frac{45}{4}(ax)^3$ with the brackets.				
	Allow	decimals. Allow lists			
A1:	is c.a.	o and is for all of the terms correct and simplified.			
	Allow $+\frac{135}{2}(ax)^2$ and $-\frac{45}{4}(ax)^3$ (ignore x^4 terms)				
	Allow	llow decimal equivalents $-202.5 ax + 67.5 a^2 x^2 - 11.25 a^3 x^3$ Allow listing.			
(b)	_				
M1:	Puts th	eir coefficient of x equal to their coefficient of x' (There should be no x terms)			
AI: '	This is	cao for obtaining a^2 or a correctly (may be unsimplified)			
A1:	1 111S 1S We wil	call 10F $a = 3\sqrt{2}$ Conditions $a = \pm 3\sqrt{2}$ l conditione all 3 marks to be scored in (b) from a solution in (a) where all signs are $\pm v_{0}$			
	= 2	$43 + \frac{405}{2}ax + \frac{135}{2}a^2x^2 + \frac{45}{4}a^3x^3$			

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

ast Pape	r This resource was created and owned by Pearson Edexcel	WMA01
		Leave
6.	A sequence is defined by	Dialik
	$u_1 = 36$	
	2	
	$u_{n+1} = \frac{1}{3}u_n, n \ge 1$	
	(a) Find the exact simplified values of y_1 , y_2 and y_3	
	$(a) \text{induce charge simplified values of } u_2^2, u_3^2 \text{ and } u_4^2 \tag{2}$	
	(b) Write down the common ratio of the sequence. (1)	
	(c) Find, giving your answer to 4 significant figures, the value of u_{11}	
	(2)	
	(d) Find the exact value of $\sum_{i=1}^{6} u_i$	
	$\sum_{i=1}^{n} i^{i} $ (2)	
	(a) Find the value of $\sum_{n=1}^{\infty} u$	
	(e) Find the value of $\sum_{i=1}^{u_i} u_i$ (2)	
14		

Autumn 2	016 www.mystudybro.com M	athematics C12			
Past Paper (N	ark Scheme) This resource was created and owned by Pearson Edexcel	WMA01			
Question	Scheme	Marks			
6.	22				
(a)	$u_2 = 24, \ u_3 = 16 \text{ and } u_4 = \frac{32}{3}$	[2]			
(b)	$r = \frac{2}{3}$	B1 [1]			
(c)	$u_{11} = ar^{10} = 36 \times (r)^{10}$.	M1			
	$u_{11} = ar^{10} = 36 \times \left(\frac{2}{3}\right)^{10} = \left(\frac{4096}{6561}\right)$				
	= 0.6243	A1 [2]			
(d)	$\sum_{i=1}^{6} u_i = \frac{36(1-\left(\frac{2}{3}\right)^6)}{1-\frac{2}{3}} \text{ or } \sum_{i=1}^{6} u_i = 36+24+16+\frac{32}{3}+u_5+u_6$	M1			
	$=98\frac{14}{27}$	A1cao [2]			
(e)	$\sum_{i=1}^{\infty} u_i = \frac{36}{1 - \frac{2}{3}} = 108$	M1 A1 [2]			
		9 marks			
	Notes				
(a)					
M1: Atter	npt to use formula correctly at least twice. It may be seen for example in u_3 and	U 4			
A1: All th	ree correct exact simplified answers. Allow 10.6				
(b)					
B1: Acce	ept $\frac{2}{3}$ or equivalent such as $\frac{24}{36}$ Allow awrt 0.667				
(c)					
M1: Uses	$u_{11} = ar^{10} = 36 \times (r)^{10}$ with their r				
A1: Acce	ept awrt 0.6243 or $\frac{4096}{6561}$				
 (d) M1: Uses correct sum formula with a = 36 and their r or alternatively for adding their first six terms. FYI Sight of 36, 24, 16, 10.7, 7.1, 4.7 followed by 98.5 implies this mark. (You may only see the first 4 terms in part a) 					
A1: Obta	ins = $98\frac{14}{27}$ (must be exact). For information $\frac{2000}{27}$ = $98\frac{14}{27}$ Allow 98.518				
M1: Uses	M1: Uses correct sum to infinity formula with $a = 36$ and either $r = \frac{2}{2}$ or their r as long as $ r < 1$				
A1: Obtai	A1: Obtains 108 (must be exact)				
1					

WMA01 Leave

blank

7. (a) Sketch the graph of $y = 3^{x-2}$, $x \in \mathbb{R}$ Give the exact values for the coordinates of the point where your graph crosses the *y*-axis.

(2)

The table below gives corresponding values of x and y, for $y = 3^{x-2}$ The values of y are rounded to 3 decimal places where necessary.

x	0.5	1	1.5	2	2.5	3
У	0.192	0.333	0.577	1	1.732	3

(b) Use the trapezium rule with all the values of *y* from the table to find an approximate value for

$$\int_{0.5}^{3} 3^{x-2} \, \mathrm{d}x$$

Give your answer to 2 decimal places.

(4)

www.mystudybro.com This resource was created and owned by Pearson Edexcel

Ουος	tion	Sahama	Morks
Ques	00011	sin D sin 1	IVIAI KS
8.	(a)	$\frac{\sin D}{5} = \frac{\sin \Omega}{6}$	M1
		$\sin D = 0.74267$ so $D = 0.84$	M1, A1
		$B = \pi - (1.1 + 0.84) = 1.20$ *	A1*
			[4]
(b)	Uses angle $DBC = \pi - 1.2 = \text{awrt } 1.94$	B1
		Area of sector is $\frac{1}{2}r^2\theta = \frac{1}{2} \times 6^2 \times 194$ or Area of triangle ABD $= \frac{1}{2} \times 5 \times 6 \times \sin 1.2$	M1
		(-34.0)	
		Total area is $\frac{1}{\sqrt{6^2}} \times \frac{100}{\sqrt{1000}} = 1200000000000000000000000000000000000$	dM1
		$= 48 \text{ Opm}^2$	A 1
		= 48.9011	A1 [4]
			8 marks
		Notes	0 1100 110
(a)			
M1:	Uses	sine rule – the sides and angles must be in the correct positions	
M1:	Make	es sin D the subject and uses inverse sine (in degrees or radians)	
A1:	Acce	pt awrt 0.84 or in degrees accept answers truncating 47.9° or rounding to 48.0°	20
AI*:	Ansv	ver is printed so should see either $\pi - (1.1 + a \text{ wrt } 0.84)$ or $\pi - 1.1 - a \text{ wrt } 0.84$ before you see 1	.20
	lf th	e question was changed to degrees look for accuracy to one decimal places throughout the π	question
	for the	the final A1 mark. So 1.1 rads = awrt 63.0° and $(180 - awrt 63.0 - awrt 48.0) = awrt 69.0 \times \frac{\pi}{100}$	-=1.20
		180)
Ther	e are	many ways to attempt this question: For example	
M1:	Uses	cosine rule $6^2 = 5^2 + x^2 - 2 \times 5 \times x \cos 1.1$ (where $x = AD$) and attempts to solve to find x. For	
inform	matio	n <i>x</i> ≈6.29	
		$B = 6^2 + 5^2 - \text{their}' 6.29'^2$	
M1:	Uses	$s \cos ne rule \cos b = \frac{2 \times 6 \times 5}{2 \times 6 \times 5}$	
		$6^2 + 5^2 - (awrt 6.29)^2$	
A1:	Ach	ieves $\cos B = \frac{\cos B}{\cos 2\pi i}$	
۸1.	1 20	2×0×3 *	
(b)	1.20		
B1:	Uses	angles on a straight line formula. Score for $\pi - 1.2$ or allow awrt 1.94 as evidence.	
	If con	nverted to degrees accept awrt 111.2° as evidence	
M1:	Uses	a correct area formula for the sector or a correct area formula for the triangle.	
	You	may follow through on an incorrectly found angle <i>DBC</i>	
	For e	xample $2\pi - 1.2$ is acceptable but $180^{\circ} - 1.2$ is not as it is using mixed units.	
	For 1	the triangle the correct combinations of sides and angle should be attempted	
	eo	You may see the area of triangle $ABD = \frac{1}{5} \times (\text{their 6.20}) \times \sin(11)$ or $\frac{1}{5} \times (\text{their 6.20}) \times \sin(\text{their 6.20})$	(ADB)
dM1	с.д. • Д.д.а	s together a correct area formula for the sector and a correct area formula for the triangle	(in the p
You may follow through on an incorrectly found angle DRC or ADR			
A1:	Acc	ept awrt 48.9 (do not need units)	

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Leave blank 9. In a large theatre there are 20 rows of seats. The number of seats in the first row is *a*, where *a* is a constant. In the second row the number of seats is (a + d), where d is a constant. In the third row the number of seats is (a + 2d), and on each subsequent row there are d more seats than on the previous row. The number of seats in each row forms an arithmetic sequence. The total number of seats in the first 10 rows is 395 (a) Use this information to show that 10a + 45d = 395(1) The total number of seats in the first 18 rows is 927 (b) Use this information to write down a second simplified equation relating a and d. (2) (c) Solve these equations to find the value of *a* and the value of *d*. (3) (d) Find the number of seats in the 20th row of the theatre. (2) 24 P 4 8 2 5 3 A 0 2 4 4 8

www.mystudybro.com This resource was created and owned by Pearson Edexcel

Ques	ion Scheme	Marks	
9. (a) Uses $\frac{n}{2}(2 \times a + (n-1)d)$ with $n = 10$ to give $10a + 45d = 395$ *	B1* [1]	
(b	Uses $\frac{n}{2}(2 \times a + (n-1)d)$ with $n = 18$ and $S = 927$	M1	
	Obtain $18a + 153d = 927$ or $2a + 17d = 103$	A1 [2]	
(c	Solves simultaneous equations to find either <i>a</i> or <i>d</i> a = 26 and $d = 3$	M1 A1, A1 [3]	
(d	Uses $a + (n-1)d$ with $n = 20$	M1	
	= 83	A1 [2]	
		8 marks	
	Notes		
B1: 1(b)M1: 0	Use the correct formula for the sum of an AP with $n = 10$, $S = 395$ AND proceeds to the given an it is acceptable for the 395 to appear just at the answer stage. Could use formula with $n = 10$, $S = 395$ and $l = a + 9d$ It is OK to list but minimum would be $a + a + d + a + 2d \dots + a + 9d = 395$ Obtain a correct second equation e.g. $927 = \frac{18}{2}(2 \times a + (18 - 1)d)$ or equivalent. Condone a slip on the	swer. ne 927.	
] d ti A1:	Note that if the candidate reads 927 as 972 they will only have access to M marks in this question. This is due to the fact that with this number, the values of <i>a</i> and <i>d</i> would be fractional and this could not occur as they must be integers A1: A simplified equation so accept either $18a + 153d = 927$ or $2a + 17d = 103$ Sight of one of these scores both marks.		
(c) M1: A1: (d) M1: A1:	 A1: Solves simultaneous equations to find either <i>a</i> or <i>d</i>. Do not concern yourself with the process as calculators are allowed on this paper so score if they proceed to either <i>a</i> and/or <i>d</i> A1: Obtains correct <i>a</i> or <i>d</i> (just one) A1: Obtains correct <i>a</i> and <i>d</i> (both) d) M1: Uses correct formula for <i>n</i> th term using their <i>a</i> and <i>d</i> but with <i>n</i> = 20. Look for '<i>a</i>'+19'<i>d</i>' A1: Correct answer 		

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

This resource was created and owned by Pearson Edexcel Past Paper WMA01 Leave blank 10. (a) Given that $8 \tan x = -3 \cos x$ show that $3\sin^2 x - 8\sin x - 3 = 0$ (3) (b) Hence solve, for $0 \le \theta < 360^\circ$, $8 \tan 2\theta = -3 \cos 2\theta$ giving your answers to one decimal place. (Solutions based entirely on graphical or numerical methods are not acceptable.) (5) 28

www.mystudybro.com This resource was created and owned by Pearson Edexcel

W	MA01

Question		Scheme	Marks
10.	(a)	Use $\frac{\sin x}{\cos x} = \tan x$ to give $8\sin x = -3\cos^2 x$	M1
		Use $\cos^2 x = 1 - \sin^2 x$ i.e. $8 \sin x = -3(1 - \sin^2 x)$	M1
		So $8 \sin n$ $2 + 2 \sin^2 n$ and $2 \sin^2 n$ $8 \sin n$ $2 = 0.*$	A1 *
		$30\ 8\sin x = -3 + 3\sin x$ and $3\sin x - 8\sin x - 5 = 0$	[3]
	(b)	Solves the three term quadratic " $3\sin^2 x - 8\sin x - 3 = 0$ "	M1
		So $(\sin x) = -\frac{1}{2}$ (or 3)	Δ1
		$(2\theta) = -1947 \text{ or } 19947 \text{ or } 34053$	dM1
		$\theta = 99.7, 170.3, 279.7 \text{ or } 350.3$	A1 A1
			[5]
			8 marks
		Notes	
(a)			
M1:	Use $\frac{s}{c}$	$\frac{\ln x}{\cos x} = \tan x$ to give $8\sin x = -3\cos^2 x$ or equivalent	
M1:	Use c	$\cos^2 x = 1 - \sin^2 x$ i.e. $8 \sin x = -3(1 - \sin^2 x)$	
	May a	lso be seen $8 \tan x = -3\cos x \Longrightarrow 8 \tan x = -3\sqrt{1-\sin^2 x}$	
A1:	Procee	eds to given answer with no errors.	
	(This	is a given answer so do not tolerate bracketing or notation errors such as $\cos^2 x$ written	
	as cos	x^2 or sin x appearing as sin)	
(b)	Caluin	a anadustia ha naval mathada (ana mataa)	
WII:	SOIVIII If the f	g quadratic by usual methods (see notes).	
A1·	You o	where $r_{\rm res}$ and $r_{\rm res}$ are $r_{\rm res}$ and $r_{\rm r$	
	This is	an intermediate answer so condone $-\frac{1}{3}$ appearing as awrt -0.333	
	Condo	ne errors on the lhs so accept for this mark $x/a/\theta = -\frac{1}{3}$, $\sin x = -\frac{1}{3}$, $\sin 2x = -\frac{1}{3}$	
dM1	dM1: Uses inverse sine to obtain an answer for 2θ .		
	This r	nay appear as answers for x. The only stipulation is that invsin k , $ k < 1$	
	It is d	ependent upon seeing a correct method of solving their quadratic	
Accept answers rounding to 1 dp for 2θ e.g. awrt –19.5 or 199.5 or 340.5.			
It may also be implied by a correct answer for θ e.g. awrt – 9.7 or 99.7 or 170.2			
A1.		μ correct switting dp $\theta = 99.7, 170.3, 279.7$ or 350.3	
A1: All four correct, awrt one dp $\theta = 99.7, 170.3, 279.7$ or 350.3			

P 4 8 2 5 3 A 0 3 0 4 8

www.mystudybro.com This resource was created and owned by Pearson Edexcel

Question	Scheme	Marks	
L			
11.			
(a)	$(13k-5)x^2 - 12kx - 6 = 0$ or $(5-13k)x^2 + 12kx + 6 = 0$	B1	
	Uses $b^2 - 4ac$ with $a = \pm 13k \pm 5$, $b = \pm 12k$ and $c = \pm 6$	M1	
	And states $b^2 - 4ac > 0$ with $a = \pm (13k - 5), b = \pm 12k$ and $c = \pm 6$	A1ft	
	Proceeds correctly with no errors to $6k^2 + 13k - 5 > 0$ *	A1*	
	Attempts to solve $(L^2 + 12k - 5)$ to give $k =$	[4]	
(U)	Attempts to solve $6k + 13k - 5 = 0$ to give $k = 1$	1711	
	\rightarrow critical values, $k = \frac{1}{3}, \frac{1}{2}$	A1	
	$6k^2 + 13k - 5 > 0$ gives $k > \frac{1}{2}$ (or) $k < \frac{-5}{2}$		
	$6k + 13k - 3 > 0$ gives $k > \frac{3}{3}$ (61) $k < \frac{3}{2}$	M1 A1	
		[4]	
	Notes	8 marks	
(a)	Notes	L	
B1: Exr	resses equation as three term quadratic in x. $(13k-5)x^2 - 12kx - 6 = 0$ oe.		
The	equals 0 may be implied by subsequent work. Allow $(5-13k)x^2 + 12kx + 6 = 0$		
Alle	w an equation of the form $13kx^2 - 5x^2 - 12kx - 6(=0)$ as long as it is followed by $a = 13k - 6(=0)$	5	
M1 • Δ <i>t</i> t	mpts $h^2 = 4ac$ with $a = \pm 13k \pm 5$ $b = \pm 12k$ and $c = \pm 6$		
or	ses quadratic formula to solve equation		
or	uses the discriminant on two sides of an equation or inequation e.g. $b^2 = 4ac$ or $b^2 < 4ac$		
A1: Use	s the discriminant condition, eg $b^2 - 4ac > 0$ or $b^2 > 4ac$ with $a = \pm 13k \pm 5$, $b = \pm 12k$ and $c =$	=±6	
A1*: Pro	ceeds to given answer with no errors. AG. Condone missing $= 0$ on the equation		
Co	adone a solution where $(13k-5)x^2 - 12kx - 6 = 0$ is followed by $144k^2 + 24(13k-5) > 0$		
Wa	tch for $a = 13k - 5$, $b = +12k$ and $c = -6$ which does give the correct inequality but loses the fi	nal A1*	
(b)			
M1: Us	es factorisation, formula, or completion of square method to find two values for k ,		
or	finds two correct answers with no obvious method for their three term quadratic		
A1: 0	tains $k = \frac{1}{3}, \frac{-3}{2}$ accept -2.5, 0.333 (awrt) here but need exact answer for final A1.		
Δ16	a condone 1^{-5} for this mark		
7 11	$x = \frac{1}{3}, \frac{1}{2}$ for this mark.		
M1: Cł	ooses outside region ($k <$ Their Lower Limit $k >$ Their Upper Limit) for appropriate 3 term of	quadratic	
ine	inequality. Do not award simply for diagram or table.		
Aw	ard if final answer is $k \ge \frac{1}{3}$ (or) $k \le \frac{-5}{2}$ or $\frac{1}{3} < k < \frac{-5}{2}$		
Co	adone x appearing instead of k		
A1: <i>k</i>	A1: $k > \frac{1}{3}$ (or) $k < \frac{-5}{2}$ $\left(k \neq \frac{5}{13}\right)$ must be exact and must be k.		
Л	Must be two separate inequalities and not be $t = 1$ $t = -5$		
IVI	is the two separate inequalities and not be $k > \frac{1}{3}$ and $k < \frac{1}{2}$		

WMA01

blank

Figure 2 shows a sketch of the curve with equation y = f(x), where

$$f(x) = \frac{x^3 - 9x^2 - 81x}{27}$$

The curve crosses the x-axis at the point A, the point B and the origin O. The curve has a maximum turning point at C and a minimum turning point at D.

(a) Use algebra to find exact values for the *x* coordinates of the points *A* and *B*.

(4)

(b) Use calculus to find the coordinates of the points C and D.

(6)

The graph of y = f(x + a), where a is a constant, has its minimum turning point on the y-axis.

(c) Write down the value of *a*.

(1)

DO NOT WRITE IN THIS AREA

Autumn 2016

Past Paper (Mark Scheme)

Question	Scheme	Marks		
12 (a)	$f(x) = \frac{x^3 - 9x^2 - 81x}{27} = 0 \implies x(x^2 - 9x - 81) = 0$	M1		
(b)	27 $x = \frac{9 \pm \sqrt{81 + 324}}{2}$ $x = \frac{9 \pm \sqrt{405}}{2} \text{or} x = \frac{9 \pm 9\sqrt{5}}{2}$ Differentiates (usual rules), correctly and sets = 0 f'(x) = 3x^2 - 18x - 81 = 0 Solves f'(x) = 0 (or multiple) $\Rightarrow x = 9$ and -3 Substitutes one of their values for x into f(x) x = 9, y = 27 and $x = 3, y = 5$	dM1 A1 A1 [4] M1, A1 dM1 A1 ddM1 A1		
(c)	a = 9	[6] B1		
		11 marks		
	Notes			
(a) M1: Atte	npts to solve $f(x) = 0$, by taking out a factor of (/cancelling by) x and obtaining a quadratic	factor.		
Allo	w on $x\left(\frac{x^2}{27} - \frac{9x}{27} - \frac{81}{27}\right) = 0$ or just the numerator $x(x^2 - 9x - 81) = 0$			
This	is implied by sight of $x^2 - 9x - 81 = 0$			
dM1: Use	s formula or completion of square method to find at least one value for x , for their three te	rm		
quadratic.	Factorisation is M0. Note that their 3 term quadratic equation may be $\frac{1}{27}x^2 - \frac{1}{3}x - 3 = 0$	_		
A1: One	correct solution – need not be fully simplified. So allow $x = \frac{9 + \sqrt{405}}{2}$ but not $x = \frac{9 + \sqrt{81 + 324}}{2}$	4		
A1: Two Special ca answers to	correct solutions – need not be simplified or attributed correctly to A or B . se: If a candidate takes out a common factor of x and uses a calculator to write down the end the quadratic they have used (a limited) amount of algebra. Decimals would not be awarded \overline{A}	xact surd ed for this		
SC. We w	ill therefore score this SC M1 M1 A0 A0 for 2 out of 4. $x(x^2 - 9x - 81) = 0 \Rightarrow x = \frac{9 \pm 9\sqrt{5}}{2}$ Jus	st writing		
down the a (b)	answers with no working scores 0 marks			
M1: Diffe You	erentiates $f(x)$ to a 3 term quadratic may see confusion over the 27 but score for $f'(x)$ being a 3 term quadratic			
A1: Diffe	erentiates correctly and sets correct derivative $= 0$			
$3x^{2}$ -	$-18x-81=0$ or any multiple thereof. For example it may be common to see $\frac{3x^2}{27} - \frac{18x}{27} - \frac{8}{27}$	$\frac{1}{7} = 0$		
dM1: Solves quadratic to give two solutions. It is dependent upon the previous M. Allow any appropriate method including the use of a calculator.				
Condone $\frac{x^2}{9} - \frac{2x}{3} - 3 = 0 \Rightarrow (x-9)(x+3) = 0$				
A1: Gives both 9 and -3 ddM1: Substitute at least one of their values of r (obtained from a solution of $f'(r) = 0$) into $f(r)$ to give $y = -1$				
A1: Gives both -27 and 5 (arising from x values of 9 and -3) (Do not require coordinates). Again they do not need to be attributed correctly to <i>C</i> or <i>D</i>				
B1: For $a = 9$ only (no ft)				

tumn 2016 t Paper	www.mystudybro.com This resource was created and owned by Pearson Edexcel	Mathematic	s C1 WMAC
13 The airele	C has control $A(1, 2)$ and passes through the point $B(2, 2)$		Leave blank
	C has centre $A(1, -3)$ and passes through the point $I(0, -2)$.		
(a) Find a	n equation for the circle C.	(4)	
The line l_1	is the tangent to C at the point P.		
(b) Find a	n equation for l_1 , giving your answer in the form $y = mx + c$	(4)	
The line l_2	, with equation $y = x + 6$, is the tangent to <i>C</i> at the point <i>Q</i> .		
(c) Find the	he coordinates of the point Q.	(5)	
		(0)	

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

P 4 8 2 5 3 A 0 3 6 4 8

www.mystudybro.com This resource was created and owned by Pearson Edexcel

WMA01

Question	S	Scheme	Marks		
13 (a)	See $(x\pm 1)^2 + (y\pm 3)^2 = r^2$	Or see $x^2 + y^2 \pm 2x \pm 6y + c = 0$	M1		
	Attempt $\sqrt{(8-1)^2 + (-2-(-3))^2}$ or $(8-1)^2 + (-2-(-3))^2$	Substitute $(8, -2)$ into equation	M1		
	$(x-1)^2 + (y+3)^2 = 50$	$x^2 + y^2 - 2x + 6y - 40 = 0$	A1, A1 [4]		
(b)	Gradient of $AP = \frac{1}{7}$		B1		
	So gradient of tangent is -7		M1		
	Equation of tangent is $(y + 2) = -7$	(x - 8)	dM1		
	y = -7x + 54 or $m = -7$, $c = 54$		A1 [4]		
	Way 1	Way 2			
(c)	y = x + 6 meets circle when	As tangent has gradient $1 AQ$ has	M1		
	$(x-1)^{2} + (x+9)^{2} = 50$ or when $(y-7)^{2} + (y+3)^{2} = 50$	gradient -1 and $\frac{y-(-3)}{x-1} = -1$	1111		
	i.e. $2x^2 + 16x + 32 = 0$ or when $2y^2 - 8y + 8 = 0$	y + x = -2	A1		
		Solve $y + x = -2$ with $y = x + 6$ or			
	Solve to give x or $y =$	alternatively solve $y + x = -2$ with the	M1		
		equation of the circle to give x or $y =$			
	Substitute to give y	= (or $x =$)	dM1		
	(-4, 2) only	A1		
			13 marks		
		Notes			
(a) M1 : Scored M1: Scored It need	I for centre at $(1,-3) \Rightarrow (x\pm 1)^2 + (y\pm 3)$ for an attempt at finding the radius of not be in the equation It can be <u>impl</u>	$x^{2} = \dots \text{ or } x^{2} + y^{2} \pm 2x \pm 6y + \dots = 0$ or the radius ² (see scheme). <u>ied</u> by $\sqrt{50}$ or $5\sqrt{2}$ or 50			
If the f	form $x^2 + y^2 \pm 2x \pm 6y + c = 0$ is used if	it is for substituting $(8, -2)$ into the equation	1		
A1: LHS 0	r RHS correct $(x-1)^2 + (y+3)^2 = $	or $(x \pm a)^2 + (y \pm b)^2 = 50 x^2 + y^2 - 2x + 6y$	=0		
(b)	$(x-1)^2 + (y+3)^2 =$	$5001 x^2 + y^2 - 2x + 6y - 40 = 001 x^2 + y^2 - 23$	x + 6y = 40		
B1 : Obtain	1/7. Implied by use of -7 in their ta	ingent			
M1: Uses negative reciprocal $dM1$: Linear equation through point (8, 2) with their negative reciprocal gradient					
A1: cao	equation anough point (0, 2) with	alen negative recipioear gradient			
(c) M1. Elimin	atas u an u from two relevant aquation	ng that is whose interpretion is O			
A1: Correct	ates x or y from two relevant equation x quadratic in x or in y	is, that is whose intersection is Q .			
M1: Solves (with usual rules) to give first variable. The first M must have been scored dM1: Substitute in either (relevant) equation to give second coordinate, dependent upon both previous					
M's	$answer accopt x = A = -2 W^{-1}$	hold this if two ensures given			
A1: Correct answer accept $x = -4$, $y = 2$. Withhold this if two answers given					

Past Paper

Mathematics C12

WMA01

www.mystudybro.com This resource was created and owned by Pearson Edexcel **Mathematics C12**

WMA01

Question	Scheme	Marks
14.	$y = -x^2 + 6x - 8$	
(a)	$\frac{dy}{dx} = -2x + 6$ and substitutes $x = 5$ to give gradient $= m = -4$	M1 A1
	Normal has gradient $\frac{-1}{m} = \left(\frac{1}{4}\right)$	M1
	Equation of normal is $(y+3) = "\frac{1}{4}"(x-5)$ so $x-4y-17 = 0$	dM1 A1 [5]
(b)	$\int -x^2 + 6x - 8 \mathrm{d}x = -\frac{x^3}{3} + 6\frac{x^2}{2} - 8x$	M1
	The Line meets the x-axis at 17	B1
	The Curve meets the <i>x</i> -axis at 4	B1
	Uses correct limits correctly for their integral	
	i.e. $\left[-\frac{x^3}{3} + 6\frac{x^2}{2} - 8x \right]_4^3 = -\frac{5^3}{3} + 6\frac{5^2}{2} - 8 \times 5 - (-\frac{4^3}{3} + 6\frac{4^2}{2} - 8 \times 4)$	M1
	Finds area above line, using area of triangle or integration $=\frac{1}{2} \times 3 \times ("17"-5)$	M1
	Area of $R = 18 + 1\frac{1}{3} = 19\frac{1}{3}$	A1
		[6]
		11 marks

Autumn 2016	www.mystudybro.com	Mathematics C12
	Notes	VIVIAUT
(a)		
M1: Differentiates to giv	$\frac{dy}{dx} = \pm 2x \pm 6$ and substitutes $x = 5$	
A1: Obtains answer -4.		
M1: Uses negative recipro	ocal of their numerical $\frac{dy}{dx}$ (follow through). M1 must have b	been awarded
dM1: Linear equation thr	ough point $(5,-3)$ with their changed gradient.	
Dependent upon the	e first M, so you would allow for $(y+3) = 4(x-5)$ following a	an answer of -4
A1: cao accept $k(x-4y-4y)$	-17) = 0 where k is a positive or negative integer	
Candidates who work wit	h a gradient of ± 2 from their $\frac{dy}{dx} = \pm 2x \pm 6$ will score 0 mark	s in this part of the
question.		
 (b) M1: Integrates a quadration If they integrate (line The terms including the terms in	c expression correctly. -curve) follow through on their new quadratic he coefficients must be correct for their quadratic bint where the line meets the x - axis meets the x axis at 4. or $y = 0 \Rightarrow x = 2, 4$ ignoring even an incorrect 2 in the integral. this if 4 appears (in the correct place) on the diagram d 5 in their integrated function is down $\int_{4}^{5} \pm (-x^{2} + 6x - 8) dx = \pm \frac{4}{3}$ (from a GC) we will allow the rea above the line for their attempted integral, so be look for area of triangle = $\frac{1}{3} \times 3 \times 110^{-11}$ for $\int_{-100}^{100} \frac{1}{5} = 100^{-100}$	the em to score this mark. $\frac{7}{2} \left[\frac{1}{2} x^2 - \frac{17}{2} x \right]^{17^*}$
n mey megrate just curve	FIGUR IOI area of utaligie = $\frac{1}{2} \times 3 \times$ "their 17–5" of $\int_{5} \left(\frac{1}{4} \times \frac{1}{4}\right)^{1/2}$	$\int \frac{dx}{8} \left[\frac{8}{8} - \frac{4}{4} \right]_5$
if they integrate (line - cu	rve) from 4 to 5, then the triangle would be $=\frac{1}{2} \times their = \frac{1}{4} \times their$	r 17–4"
A1: correct work leading	to $19\frac{1}{3}$	
A candidate who does th	e integration on a GC can potentially score M0 B1 B1 M1	1 M1 A0

WMA01

Figure 4 shows a solid wooden block. The block is a right prism with length h cm. The cross-section of the block is a semi-circle with radius rcm.

The total surface area of the block, including the curved surface, the two semi-circular ends and the rectangular base, is 200 cm²

(a) Show that the volume $V \text{ cm}^3$ of the block is given by

 $V = \frac{\pi r (200 - \pi r^2)}{4 + 2\pi}$ (5)

- (b) Use calculus to find the maximum value of V. Give your answer to the nearest cm^3 .
- (c) Justify, by further differentiation, that the value of V that you have found is a maximum.

(2)

(6)

Autumn 2 Past Paper (M	016 www.mystudybro.com ark Scheme) This resource was created and owned by Pearson Edexcel	Mathematics C12
Question	Scheme	Marks
15 (a)	$200 = \pi r^2 + \pi r h + 2 r h$	M1 A1
	$(h=)rac{200-\pi r^2}{\pi r+2r}$ or $(rh=)rac{200-\pi r^2}{\pi+2}$	dM1
	$V = \frac{1}{2}\pi r^2 h =$	M1
	$\Rightarrow V = \frac{\pi r^2 (200 - \pi r^2)}{2(2r + \pi r)} = \frac{\pi r (200 - \pi r^2)}{4 + 2\pi} \qquad *$	A1 cso *
(b)	$\frac{dV}{dr} = \frac{200\pi - 3\pi^2 r^2}{4 + 2\pi}$ Accept awrt $\frac{dV}{dr} = 61.1 - 2.9r^2$	M1 A1
	$\frac{200\pi - 3\pi^2 r^2}{4 + 2\pi} = 0 \text{ or } 200\pi - 3\pi^2 r^2 = 0 \text{ leading to } r^2 =$	dM1
	$r = \sqrt{\frac{200}{3\pi}}$ or answers which round to 4.6	dM1 A1
	V = 188	B1 [6]
(c)	$\frac{d^2 V}{dr^2} = \frac{-6\pi^2 r}{4+2\pi}$, and sign considered Accept $\frac{d^2 V}{dr^2} = awrt - 5.8r$	M1
	$\frac{\mathrm{d}^2 V}{\mathrm{d}r^2} = -27 < 0$ and therefore maximum	A1
	17 =	[2] 13 marks

	nn 2010 www.mystudybro.com Matr	
Pastr	Notes	VIMAUT
(a)		
(a) M1:	Sets total surface area equal to 200 with at least two correct terms. Note that $200 = 2\pi r^2 + \pi rh$ or even $200 = \pi r^2 + \pi rh + \pi r^2$ does not mean that two terms	are correct.
A1: dM1	Completely correct $200 = \pi r^2 + \pi rh + 2rh$ Makes <i>h</i> or <i>rh</i> the subject of their formula which must have had two terms in <i>h</i> This is dependent upon the previous M1	
M1:	Gives formula for volume. This may be implied by sight of $V = \frac{1}{2}\pi r^2 \times \text{their } h$	
A1*: cso – substitutes for r or for rh correctly and proceeds correctly to $V = \frac{\pi r(200 - \pi r)}{4 + 2\pi}$		
(b)	arts b and c can be scored together	
M1:	Attempts to differentiate V or numerator of V Accept $\frac{dV}{dr} = A \pm Br^2$	
	You may see $(4+2\pi)\frac{dV}{dr} = A \pm Br^2$ if candidates multiply by $(4+2\pi)$ first	
A1:	Accept any equivalent correct answer or correct numerator if only this was considered. Also accept decimals.	
dM1	Setting $\frac{dV}{dr} = 0$ and finding a value for r^2 using correct mathematics (May be implied by	answer).
	Note that you may not see r^2 . It is acceptable to go straight to r. Allow $\frac{dy}{dx} = 0$	
d M 1	Using square root to find r . Dependent upon all previous M's. An answer of 5 for r following a correct derivative may imply this mark as some candid the nearest cm rather than V to the nearest cm ³ . If you don't see incorrect work you may award this mark.	ates find r to
A1 :	For any equivalent correct answer. Accept $r = \sqrt{\frac{200}{3\pi}}$ or awrt 4.6	
B1 : (c)	Correct answer implies previous two M marks Obtain <i>V</i> = 188 Exact answer only. Do not accept, for example, 187.8	
M1 :	Score for either a second derivative of $\frac{d^2V}{dr^2} = \pm Cr$ and considers the sign.	
	It can be implied by $\frac{\pi r(200 - \pi r^2)}{4 + 2\pi} \rightarrow A \pm Br^2 \rightarrow \pm Cr$ and a consideration of the sign	
	Or a second derivative of $\frac{d^2V}{dr^2} = \pm Cr$ and substitutes in their value of 'r' from (b)	
	Or a completely correct second derivative $\frac{d^2V}{dr^2} = \frac{-6\pi^2 r}{4+2\pi} \operatorname{accept} \frac{d^2V}{dr^2} = \operatorname{awrt} -5.76r$	
A1:	Clear statements and conclusion. For both marks	
() $\frac{d^2V}{dr^2}$ must be correct (see above), not just the numerator.	
() A statement (which could be implied) that when their <i>r</i> (which does not need to be cond ² <i>U</i> d ² <i>U</i>	rect) is
	substituted into $\frac{d^2 v}{dr^2}$ then $\frac{d^2 v}{dr^2}$ is either negative or < 0	
() and a minimal conclusion such as hence maximum $A^{2}V \qquad A^{2}V$	
	For example, accept for both marks $\frac{d^2 v}{dr^2} = -5.76r$ When $r = 4.5 \Rightarrow \frac{d^2 v}{dr^2} < 0$, hence max	