MyStudyBro - Revision Exercise Tool

This Revision Handout includes the Questions and Answers of a total of 5 exercises!

Chapters:

Differential Equations - F2 (Pearson Edexcel)

- Page 1(WFM02) 2018 SummerPage 2(WFM02) 2018 Summer AnswerControl Control Contr
- Page 3 (WFM02) 2018 Summer
- Page 4 (WFM02) 2018 Summer Answer
- Page 6 (WFM02) 2017 Summer
- Page 7 (WFM02) 2017 Summer Answer
- Page 8 (WFM02) 2017 Summer
- Page 9 (WFM02) 2017 Summer Answer
- Page 10 (WFM02) 2016 Summer
- Page 11 (WFM02) 2016 Summer Answer

Summe		18 www.mystudybro.com This resource was created and owned by Pearson Edexcel	Mathematics F
		Find the general solution of the differential equation $(x^{2} + 1)\frac{dy}{dx} + xy - x = 0$	Leave
		giving your answer in the form $y = f(x)$.	(6)
	(b)	Find the particular solution for which $y = 2$ when $x = 3$	(2)
4			
4 MSB	- Pa	ge 1 P 5 1 5 1 6 A 0 4 3 2	

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Question	Scheme	Notes	Marks	
Number 2(a)				
	$\left(x^2+1\right)\frac{\mathrm{d}y}{\mathrm{d}x}+xy-x=0$			
	$\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{xy}{\left(1+x^2\right)} = \frac{x}{\left(1+x^2\right)}$	Correct form.	B1	
	$I = e^{\int \frac{x}{1+x^2} dx} = e^{\frac{1}{2}\ln(1+x^2)} = \left(1+x^2\right)^{\frac{1}{2}}$	M1: $I = e^{\int \frac{x}{1+x^2} dx} = e^{k \ln(1+x^2)}$ where k is a constant. (Condone missing brackets around the $x^2 + 1$) A1: Correct integrating factor of $(1+x^2)^{\frac{1}{2}}$	M1A1	
	$y(1+x^2)^{\frac{1}{2}} = \int \frac{x}{(1+x^2)^{\frac{1}{2}}} dx$	Uses their integration factor to reach the form $yI = \int Q I dx$	M1	
	$= \left(1+x^2\right)^{\frac{1}{2}} \left(+c\right)$	Correct integration $(+ c \text{ not needed})$	A1	
	$y = 1 + c \left(1 + x^2\right)^{-\frac{1}{2}}$ oe	Cao with the constant correctly placed. (The " y =" must appear at some point)	A1	
Way 2	$\frac{\text{Alternative by separation of } f dy f x dy f f$		B1	
	$\int \frac{\mathrm{d}y}{1-y} = \int \frac{x}{x^2 + 1} \mathrm{d}x$	Separates variables correctly	DI	
	$\int \frac{x}{x^2 + 1} \mathrm{d}x = \frac{1}{2} \ln \left(x^2 + 1 \right)$	M1: $\int \frac{x}{x^2 + 1} dx = k \ln(x^2 + 1)$ where k is a constant. (Condone missing brackets around the $x^2 + 1$) A1: Correct integration $\frac{1}{2} \ln(x^2 + 1)$	M1A1	
	$\int \frac{\mathrm{d}y}{1-y} = -\ln\left(1-y\right)$	$\int \frac{dy}{1-y} = k \ln(1-y) \text{ or e.g.}$ $\int \frac{dy}{y-1} = k \ln(y-1)$	M1	
	$-\ln(1-y) = \frac{1}{2}\ln(x^2+1)(+c)$	Fully correct integration	A1	
	$y = 1 + c(1 + x^2)^{-\frac{1}{2}}$ oe	Cao and isw if necessary.	A1 (6)	
(b)	$2 = 1 + c (1 + 3^2)^{-\frac{1}{2}} \Longrightarrow c = \dots$	Substitutes $x = 3$ and $y = 2$ and attempts to find a value for <i>c</i> .	(6) M1	
	$(y=)1+\sqrt{10}(1+x^2)^{-\frac{1}{2}}$ oe	Cao. (" y =" not needed for this mark) and apply isw if necessary.	A1	
			(2)	
			Total 8	

Mathematics F2

WFM02 Leave

blank

DO NOT WRITE IN THIS AREA

6. (a) Show that the transformation $x = e^t$ transforms the differential equation

$$x^{2}\frac{d^{2}y}{dx^{2}} - 3x\frac{dy}{dx} + 3y = x^{2} \qquad x > 0$$
 (I)

into the differential equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} - 4\frac{\mathrm{d}y}{\mathrm{d}t} + 3y = \mathrm{e}^{2t} \tag{II}$$

(b) Find the general solution of the differential equation (II), expressing y as a function of t.

(6)

(6)

(c) Hence find the general solution of the differential equation (I).

(1)

20

Summer 2018

Past Paper (Mark Scheme)

www.mystudybro.com This resource was created and owned by Pearson Edexcel

WFM02

Question Number	Scheme Notes		Marks
6	$x^2 \frac{d^2 y}{dx^2} - 3x \frac{dy}{dx} +$	$3y = x^2$	
(a)	$x = e^{t} \Rightarrow \frac{dx}{dy} = e^{t} \frac{dt}{dy} \Rightarrow \frac{dy}{dx} = e^{-t} \frac{dy}{dt}$	M1: Attempt first derivative using the chain rule to obtain $\frac{dx}{dy} = e^{t} \frac{dt}{dy}$ A1: $\frac{dy}{dx} = e^{-t} \frac{dy}{dt}$ oe	M1A1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = x^{-1}\frac{\mathrm{d}y}{\mathrm{d}t} \Longrightarrow \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = -x^{-2}\frac{\mathrm{d}y}{\mathrm{d}t} + x^{-1}\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} \cdot \frac{\mathrm{d}t}{\mathrm{d}x}$	dM1: Attempt product rule and chain rule. Dependent on the first method mark and must be a fully correct method with sign errors onlyA1: Correct second derivative oe	dM1A1
	$x^{2}\left(\frac{1}{x^{2}}\frac{\mathrm{d}^{2}y}{\mathrm{d}t^{2}}-\frac{1}{x^{2}}\frac{\mathrm{d}y}{\mathrm{d}t}\right)-3x\left(\frac{1}{x}\frac{\mathrm{d}y}{\mathrm{d}t}\right)+3y=\left(\mathrm{e}^{t}\right)^{2}$	Substitutes their $\frac{d^2 y}{dx^2}$ and $\frac{dy}{dx}$ in terms of <i>t</i> into the differential equation	M1
	$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} - 4\frac{\mathrm{d}y}{\mathrm{d}t} + 3y = \mathrm{e}^{2t}$	cso	A1
-			(6
	Alternativ	e	
	$x = e^{t} \Longrightarrow \frac{dy}{dt} = e^{t} \frac{dy}{dx} = x \frac{dy}{dx}$	M1: Attempt first derivative using $\frac{dy}{dt} = \frac{dx}{dt} \times \frac{dy}{dx}$ A1: $\frac{dy}{dt} = x \frac{dy}{dx}$ oe	M1A1
-	$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} = \frac{\mathrm{d}x}{\mathrm{d}t}\frac{\mathrm{d}y}{\mathrm{d}x} + x\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}\cdot\frac{\mathrm{d}x}{\mathrm{d}t} = x\frac{\mathrm{d}y}{\mathrm{d}x} + x^2\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}$	dM1: Attempt product rule and chain rule. Dependent on the first method mark and must be a fully correct method with sign errors 	dM1A1
-	$\frac{d^2 y}{dt^2} - x \frac{dy}{dx} - 3x \frac{dy}{dx} + 3y = e^{2t}$ $= \frac{d^2 y}{dt^2} - \frac{dy}{dt} - 3 \frac{dy}{dt} + 3y = e^{2t}$ $\frac{d^2 y}{dt^2} - 4 \frac{dy}{dt} + 3y = e^{2t}$	Substitutes their $\frac{d^2 y}{dx^2}$ and $x \frac{dy}{dx}$ in terms of <i>t</i> into the differential equation	M1
	$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} - 4\frac{\mathrm{d}y}{\mathrm{d}t} + 3y = \mathrm{e}^{2t}$	Cso	A1
-			(6

		Colves (cocording to the Constant	
(b)	$m^2 - 4m + 3 = 0 \Longrightarrow m = 1, 3$	Solves (according to the General Guidance) the correct quadratic (so	M1
	$m \rightarrow m + 5 = 0 \rightarrow m = 1, 5$	should be $m = \pm 1, \pm 3$)	1011
	$(\ldots) A^{-3t} + D^{-t}$	Correct CF in terms of <i>t</i> not <i>x</i> . (May	A 1
	$(y=)Ae^{3t}+Be^{t}$	be seen later in their GS)	A1
		Correct form for PI and differentiates	
	$y = ke^{2t}, y' = 2ke^{2t}, y'' = 4ke^{2t}$	twice to obtain multiples of e^{2t} each	M1
	<i>y ne , y 2ne , y me</i>	time but do not allow if they are	
		clearly integrating.	
		Substitutes their y, y', y'' that are of	
	$4ke^{2t} - 8ke^{2t} + 3ke^{2t} = e^{2t} \Longrightarrow k = \dots$	the form αe^{2t} into the differential	M1
		equation and sets = e^{2t} and proceeds to find their k	
	() 24		
	$(y) = -e^{2t}$	Correct PI or $k = -1$	A1
		Correct ft GS in terms of <i>t</i> (their CF +	
	$y = Ae^{3t} + Be^t - e^{2t}$	their PI with non-zero PI).	B1ft
		Must be $y = \dots$	
			(6)
(c)		Allow equivalent expressions in terms	
	$(y=)Ax^3+Bx-x^2$	of x e.g. $(y =) A e^{3\ln x} + B e^{\ln x} - e^{2\ln x}$.	B1
		Note that $y = \dots$ is not needed here.	
			(1)
			Total 13

Summ Past Pap	• •	lathemat	ics F2 WFM02
			Leave blank
4.	$y = 3e^{-x}\cos 3x + Ae^{-x}\sin 3x$		
	is a particular integral of the differential equation		
	$\frac{d^2 y}{dx^2} - 2 \frac{dy}{dx} + 10y = 40e^{-x} \sin 3x$		
	where A is a constant.		
	(a) Find the value of A.	(5)	
	(b) Hence find the general solution of this differential equation.	(4)	
	(c) Find the particular solution of this differential equation for which both $y = 3$ and $\frac{dy}{dy} = 2$ at $x = 0$.	ind	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3 \text{ at } x = 0$	(4)	
10			
MSE	B - Page 6 P 4 8 2 5 9 A 0 1 0 2 8		

DO NOT WRITE IN THIS AREA

Question	Scheme	Notes	Marks	
Number			17101K5	
4 (a)	$y = 3e^{-x}\cos 3x + Ae^{-x}\sin 3x$			
	$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = -3\mathrm{e}^{-x}\cos 3x - 9\mathrm{e}^{-x}\sin 3x - A\mathrm{e}^{-x}\sin 3x + 3A\mathrm{e}^{-x}\cos 3x$			
	$(=(-3+3A)e^{-x}\cos 3x + (-9-A)e^{-x}\sin 3x)$			
	Attempts to differentiate the given expression by using the product rule on			
	$3e^{-x}\cos 3x$ to give $\alpha e^{-x}\cos 3x + \beta e^{-x}\sin 3x$ or by using the product rule on			
	$Ae^{-x}\sin 3x$ to give $\alpha Ae^{-x}\cos x$	$s3x + \beta Ae^{-x} \sin 3x$		
	$\frac{d^2 y}{dx^2} = (-24 - 6A)e^{-x}\cos 3x + $	$(18-8A)e^{-x}\sin 3x$		
	(Terms may be unce	-	- d M1	
	Uses the product rule again on an expression of			
	give $\alpha e^{-x} \cos 3x + \beta e^{-x} \sin 3x$. Depende	ent on the first method mark.		
	$\frac{d^2 y}{dx^2} - 2\frac{dy}{dx} + 10y = (12 - 12A)e^{-x}\cos 3x + (36 + 4A)e^{-x}\sin 3x$			
	Substitute their results into the differentia			
	$12 - 12A = 0$ or $36 + 4A = 40 \Longrightarrow A = \dots$	Compares coefficients of $e^{-x} \sin 3x$ or $e^{-x} \cos 3x$ and attempts to find <i>A</i> . Dependent on	- d M1	
		the previous method mark.		
	$\Rightarrow A = 1$	сао	A1 (7)	
(b)		M1: Forms and attempts to solve	(5)	
Marks	$m^2 - 2m + 10 = 0 \Longrightarrow m = 1 \pm 3i$	the Auxiliary Equation. See General Principles.	M1 A1	
for (b)		A1: Correct solution for the AE		
can score anywhere in their	$(y =)e^{x}(C\cos 3x + D\sin 3x)$ or $(y =)Ce^{(1+3i)x} + De^{(1-3i)x}$	Correct form for CF using their complex roots from the AE	M1	
answer.	$y = e^{x}(C\cos 3x + D\sin 3x) + 3e^{-x}\cos 3x + e^{-x}\sin 3x$ GS = their CF + their PI (Allow ft on their CF and PI) Must start y = and depends on at least one the M's being scored and must have been using a PI of the form given.			
	¥		(4)	
(c)	$x = 0, y = 3 \Longrightarrow 3 = C + 3 (\Longrightarrow C = 0)$	Attempts to substitute $x = 0$ and $y = 3$ into their answer to (b)	M1	
	$\frac{dy}{dx} = (C+3D)e^{x}\cos 3x + (-3C+D)e^{x}\sin 3x - 10e^{-x}\sin 3x$			
	Attempt to differentiate their GS with or without their CAttempt to substitute $x = 0$ and			
	3 = C + 3D	Attempt to substitute $x = 0$ and $\frac{dy}{dx} = 3$ into their $\frac{dy}{dx}$	M1	
	$y = e^x \sin 3x + 3e^{-x} \cos 3x + e^{-x} \sin 3x$	Correct answer. Must start $y = \dots$	Alcao	
			(4) Total 13	
			Total 13	

Mathematics F2

WFM02

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

www.mystudybro.com Past Paper This resource was created and owned by Pearson Edexcel Leave blank Find the general solution of the differential equation 6. $\cos x \, \frac{\mathrm{d}y}{\mathrm{d}x} + y \sin x = (\cos^2 x) \ln x, \qquad 0 < x < \frac{\pi}{2}$ Give your answer in the form y = f(x). (8) 16 P 4 8 2 5 9 A 0 1 6 2 8 MSB - Page 8

Summer 2017 Past Paper (Mark Scheme) www.mystudybro.com This resource was created and owned by Pearson Edexcel

Question Number	Scheme	Notes		
6.	$\cos x \frac{\mathrm{d}y}{\mathrm{d}x} + y \sin x = (\cos^2 x) \ln x$			
	$\frac{\mathrm{d}y}{\mathrm{d}x} + y\frac{\sin x}{\cos x} = \cos x \ln x$	Attempt to divide through by $\cos x$. If the intention is not clear, must see at least 2 terms divided by $\cos x$.	M1	
	$I = e^{\int \frac{\sin x}{\cos x} dx} = e^{-\ln \cos x}$	M1: $e^{\int \pm their P(x)(dx)}$. Dependent on the first method mark. A1: $e^{-\ln \cos x}$ or $e^{\ln \sec x}$	dM1A1	
	$=\frac{1}{\cos x}$	$\frac{1}{\cos x} \operatorname{or} (\cos x)^{-1} \operatorname{or} \sec x$	A1	
	$\frac{y}{\cos x} = \int \ln x dx$ or $\frac{d}{dx} \left(\frac{y}{\cos x} \right) = \ln x$	M1: $y \times \text{their } I = \int Q(x) \times \text{their } I dx$ or $\frac{d}{dx} (y \times \text{their } I) = Q(x) \times \text{their } I$ A1: $\frac{y}{\cos x} = \int \ln x dx$ or $\frac{d}{dx} \left(\frac{y}{\cos x} \right) = \ln x$	- M1A1	
	$\frac{y}{\cos x} = x \ln x - x + C$	Attempts $\int \ln x dx$ by parts correctly (correct sign needed unless correct formula quoted and used).	M1	
	$y = (x \ln x - x + C) \cos x$	Any equivalent with the constant correctly placed and " $y =$ " must appear at some stage.	A1	
			Total 8	
		the start would mean that only the 3 rd rk is available.		

Past Paper WFM02 Leave blank (a) Find the general solution of the differential equation 6. $\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = 3x^2 + 2x + 1$ (9) (b) Find the particular solution of this differential equation for which y = 0 and $\frac{dy}{dx} = 0$ when x = 0when x = 0(5) 18 P 4 6 6 8 5 A 0 1 8 3 2 MSB - Page 10

Past Paper (Mark Scheme)

This resource was created and owned by Pearson Edexcel

WFM02

Question Number	Scheme		Notes	Marks
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 3\frac{\mathrm{d}y}{\mathrm{d}x} + 2y =$	$3x^{2} +$	2 <i>x</i> +1	
6(a)	$m^2 + 3m + 2 = 0 \Longrightarrow m = -1, -2$	Correct roots (may be implied by their CF)		B1
	$y = Ae^{-\alpha} + Be^{-\alpha}$		CF of the correct form Correct CF	M1A1
	$y = ax^2 + bx + c$	Corr	B1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2ax + b, \ \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 2a \Longrightarrow 2a + 3(2ax + b)$	b)+2	$e\left(ax^2+bx+c\right) = 3x^2+2x+1$	M 1
	M1: Differentiates twice and substitutes into			
	and puts equal to $3x^2 + 2x + 1$ or substitute			
	equation and compares coeffi For the substitution, at least one of y ,			
	2	<i>y</i> 01 <u>,</u>	y must be concerty placed.	
	$a=\frac{3}{2}$			A1
	$6a+2b-2 \Rightarrow b-\frac{7}{2} \Rightarrow c-\frac{17}{2}$ M1: Solves to obtain one of b or c		Solves to obtain one of <i>b</i> or <i>c</i>	M1A1
	$30 + 20 = 2 \Rightarrow 0 = \frac{2}{2} \Rightarrow 0 = \frac{4}{4}$	A1: Correct <i>b</i> and <i>c</i>		WIIAI
	$a = \frac{3}{2}$ $6a + 2b = 2 \Longrightarrow b = -\frac{7}{2} \Longrightarrow c = \frac{17}{4}$ $y = Ae^{-2x} + Be^{-x} + \frac{3}{2}x^2 - \frac{7}{2}x + \frac{17}{4}$	Correct ft (their CF + their PI) but must be $y =$		B1ft
				(9)
(b)	$0 = A + B + \frac{17}{4}$	Substitutes $x = 0$ and $y = 0$ into their GS		M1
	$\frac{dy}{dx} = -2Ae^{-2x} - Be^{-x} + 3x - \frac{7}{2} \Longrightarrow 0 = -2A - B - \frac{7}{2}$			M1
	Attempts to differentiate and substitutes $x = 0$ and $y' = 0$			
	$0 = A + B + \frac{17}{4}, 0 = -2A - B - \frac{7}{2} \Longrightarrow A =, B$	8 =	Solves simultaneously to obtain values for <i>A</i> and <i>B</i>	M1
	$A = \frac{1}{4}, B = -5$		Correct values	A1
	$y = \frac{3}{4}e^{-2x} - 5e^{-x} + \frac{3}{2}x^2 - \frac{7}{2}x + \frac{17}{4}$		Correct ft (their CF + their PI) but must be $y =$	B1ft
				(5)
				Total 14