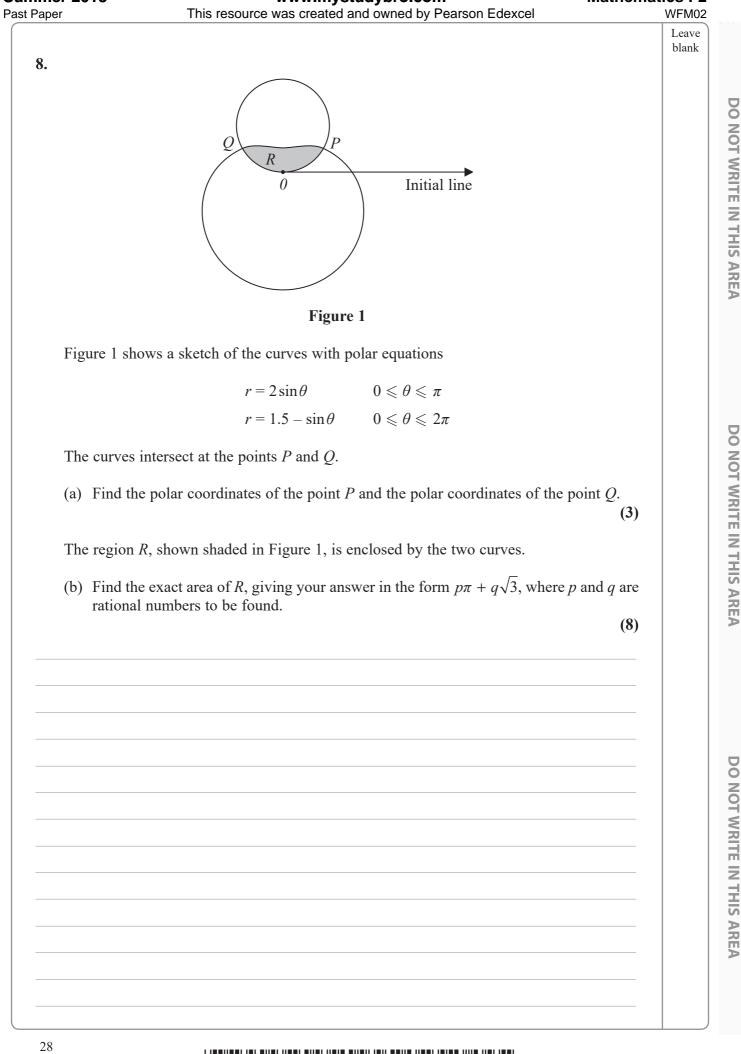
# **MyStudyBro - Revision Exercise Tool**


This Revision Handout includes the Questions and Answers of a total of 5 exercises!

### **Chapters:**

#### Polar Coordinates - F2 (Pearson Edexcel)

- Page 1(WFM02) 2018 SummerPage 2(WFM02) 2018 Summer AnswerPage 5(WFM02) 2017 SummerPage 6(WFM02) 2017 Summer AnswerPage 9(WFM02) 2016 Summer
- Page 10 (WFM02) 2016 Summer Answer
- Page 13 (WFM02) 2015 Summer
- Page 14 (WFM02) 2015 Summer Answer
- Page 15 (WFM02) 2014 Summer
- Page 16 (WFM02) 2014 Summer Answer

### **Mathematics F2**

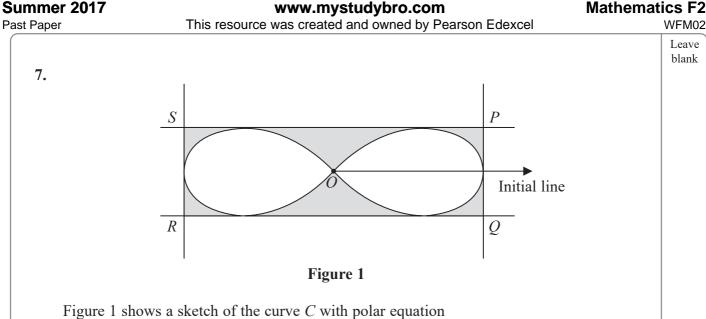


9 5 1 5 1 6 A 0 2 8 3 2

| Question<br>Number | Scheme                                                                                                                                                    | Notes                                                                                                                                                  | Marks |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 8(a)               | $2\sin\theta = 1.5 - \sin\theta \Longrightarrow \theta = \dots$<br>or<br>$\sin\theta = \frac{r}{2} \Longrightarrow r = 1.5 - r \Longrightarrow r = \dots$ | Equate and attempt to solve for $\theta$<br>or<br>Eliminates $\sin\theta$ and solves for $r$                                                           | M1    |
|                    | $P\left(1,\frac{\pi}{6}\right)$                                                                                                                           | Correct coordinates. Allow the marks as soon as the correct values are seen and allow coordinates the wrong way round and allow awrt 0.524 for $\pi/6$ | A1    |
|                    | $Q\left(1,\frac{5\pi}{6}\right)$                                                                                                                          | Correct coordinates. Allow the marks as soon as the correct values are seen and allow coordinates the wrong way round and allow awrt 2.62 for $5\pi/6$ | A1    |
|                    |                                                                                                                                                           |                                                                                                                                                        | (3)   |

www.mystudybro.com This resource was created and owned by Pearson Edexcel

### Mathematics F2


WFM02

| (1-) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ļ              |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| (b)  | $\left(\frac{1}{2}\right)\int (1.5 - \sin\theta)^2 d\theta  \text{or}  \left(\frac{1}{2}\right)\int (2\sin\theta)^2 d\theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M1             |
| _    | Attempts to use $ \int (\sin \theta)^2 d\theta$ or $ \int (1.5 - \sin \theta)^2 d\theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |
|      | $(1.5 - \sin \theta)^2 = 2.25 - 3\sin \theta + \sin^2 \theta = 2.25 - 3\sin \theta + \frac{(1 - \cos 2\theta)}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|      | Expands (allow poor squaring e.g. $(1.5 - \sin \theta)^2 = 2.25 + \sin^2 \theta$ and attempts to use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M1             |
|      | $\sin^2\theta = \pm \frac{1}{2} \pm \frac{\cos 2\theta}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |
|      | $\frac{1}{2}\int (1.5 - \sin\theta)^2 d\theta = \frac{1}{2} \left[ \frac{11}{4} \theta + 3\cos\theta - \frac{1}{4}\sin 2\theta \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |
|      | M1: Attempt to integrate and reaches an expression of the form<br>$\alpha\theta + \beta\cos\theta + \gamma\sin 2\theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M1A1           |
| -    | $\frac{\text{A1: Correct integration (with or without the \frac{1}{2})}{1 + \frac{1}{2} + $ |                |
|      | $\frac{1}{2} \left[ \int_{\frac{\pi}{6}}^{\frac{5\pi}{6}} = \frac{1}{2} \left\{ \left( \frac{11}{4} \cdot \frac{5\pi}{6} + 3 \cdot \cos \frac{5\pi}{6} - \frac{1}{4} \sin 2 \cdot \frac{5\pi}{6} \right) - \left( \frac{11}{4} \cdot \frac{\pi}{6} + 3 \cdot \cos \frac{\pi}{6} - \frac{1}{4} \sin 2 \cdot \frac{\pi}{6} \right) \right\}$<br>This is a key step and must be the correct method for this part of the area e.g. uses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | M1             |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |
|      | their $\frac{-}{6}$ and their $\frac{-}{6}$ (or twice limits of their $\frac{-}{6}$ and $\frac{-}{2}$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |
|      | their $\frac{\pi}{6}$ and their $\frac{5\pi}{6}$ (or twice limits of their $\frac{\pi}{6}$ and $\frac{\pi}{2}$ )<br>$\frac{1}{2}\int (2\sin\theta)^2 d\theta = \int (1-\cos 2\theta) d\theta = \left[\theta - \frac{1}{2}\sin 2\theta\right]_0^{\frac{\pi}{6}} = \left(\frac{\pi}{6} - \frac{\sqrt{3}}{4}\right)(-0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |
|      | Uses the limits 0 and their $\frac{\pi}{6}$ to find at least one segment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |
|      | If using integration, must have integrated to obtain $p\theta + q\sin 2\theta$ with correct use of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M1             |
|      | limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |
|      | NB can be done as: $\frac{1}{2}(1)^2 \left(\frac{\pi}{3}\right) - \frac{1}{2}(1)^2 \sin\left(\frac{\pi}{3}\right)$ but must be correct work for their                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |
| -    | angles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |
|      | $\frac{11}{12}\pi - \frac{11\sqrt{3}}{8} + 2\left(\frac{\pi}{6} - \frac{\sqrt{3}}{4}\right) = \frac{5}{4}\pi - \frac{15}{8}\sqrt{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
|      | <b>dd</b> M1: Adds their two areas to give a numerical value for the shaded area<br>Dependent on the previous 2 M marks and must be a completely correct strategy so<br>needs to be an attempt at:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|      | $\frac{1}{2} \int_{\frac{\pi}{6}}^{\frac{\pi}{6}} (1.5 - \sin\theta)^2 d\theta \text{ or } 2 \times \frac{1}{2} \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} (1.5 - \sin\theta)^2 d\theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>dd</b> M1A1 |
|      | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |
|      | $2 \times \frac{1}{2} \int_{0}^{\frac{\pi}{6}} (2\sin\theta)^2 d\theta \operatorname{or}\left(\frac{1}{2} \int_{0}^{\frac{\pi}{6}} (2\sin\theta)^2 d\theta + \frac{1}{2} \int_{\frac{5\pi}{6}}^{\pi} (2\sin\theta)^2 d\theta\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
|      | A1: Correct answer (allow equivalent fractions)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (8)            |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Total 11       |

| Note that attempts to use $\left(\frac{1}{2}\right)\int (C_1 - C_2)^2 d\theta$ e.g. $\left(\frac{1}{2}\right)\int (2\sin\theta - (1.5 - \sin\theta))^2 d\theta$<br>Will probably only score a maximum of the first 3 marks<br>i.e.<br>M1 for $\left(\frac{1}{2}\right)\int (2\sin\theta - (1.5 - \sin\theta))^2 d\theta$<br>M1 for expanding <b>and</b> attempting to use $\sin^2\theta = \pm \frac{1}{2} \pm \frac{\cos 2\theta}{2}$<br>M1 for attempting to integrate and reaching an expression of the form<br>$\alpha\theta + \beta\cos\theta + \gamma\sin 2\theta$ |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom





 $r = 4\cos 2\theta$ ,  $-\frac{\pi}{4} \le \theta \le \frac{\pi}{4}$  and  $\frac{3\pi}{4} \le \theta \le \frac{5\pi}{4}$ 

The lines PQ, QR, RS and SP are tangents to C, where QR and SP are parallel to the initial line and PQ and RS are perpendicular to the initial line.

- (a) Find the polar coordinates of the points where the tangent SP touches the curve. Give the values of  $\theta$  to 3 significant figures.
- (b) Find the exact area of the finite region bounded by the curve C, shown unshaded in Figure 1.

(c) Find the area enclosed by the rectangle PQRS but outside the curve C, shown shaded in Figure 1.

(5)

(5)

(5)



20

**Mathematics F2** 

**Summer 2017** 

Past Paper (Mark Scheme)

www.mystudybro.com This resource was created and owned by Pearson Edexcel

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                            | Notes                                                                                                                                                                                                                                                                                                                                                                                                                         | Marks |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 7                  | 5<br>R                                                                                                                                                                                                                                                                                                                            | Q<br>Q                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
| (a)                | $y = r\sin\theta = 4\cos 2\theta\sin\theta$                                                                                                                                                                                                                                                                                       | Attempts to use $r \sin \theta$                                                                                                                                                                                                                                                                                                                                                                                               | M1    |
|                    | $\frac{dy}{d\theta} = 4\cos 2\theta \cos \theta - 8\sin 2\theta \sin \theta$<br>or<br>$y = 4(1 - 2\sin^2 \theta)\sin \theta = 4\sin \theta - 8\sin^3 \theta \Rightarrow \frac{dy}{d\theta} = 4\cos \theta - 24\sin^2 \theta \cos \theta$<br>A correct expression for $\frac{dy}{d\theta}$ or any multiple of $\frac{dy}{d\theta}$ |                                                                                                                                                                                                                                                                                                                                                                                                                               | B1    |
|                    | $\frac{\mathrm{d}y}{\mathrm{d}\theta} = 0 \Longrightarrow \theta = \dots$                                                                                                                                                                                                                                                         | Set their $\frac{dy}{d\theta} = 0$ and attempt to solve to<br>obtain a value for $\theta$                                                                                                                                                                                                                                                                                                                                     | M1    |
|                    | $r = \frac{8}{3}, \ \theta = 0.421, \ \theta = 2.72$                                                                                                                                                                                                                                                                              | Any one of: $r = \frac{8}{3}$ (or awrt 2.7)<br>or $\theta = 0.421$ or $\theta = 2.72$                                                                                                                                                                                                                                                                                                                                         | A1    |
|                    | $r = \frac{8}{3}$<br>$\theta = 0.421, \ 2.72$                                                                                                                                                                                                                                                                                     | Correct value for <i>r</i> and both angles correct.<br>May be seen as $\left(\frac{8}{3}, 0.421\right)$ , $\left(\frac{8}{3}, 2.72\right)$ . Allow<br>$\left(0.421, \frac{8}{3}\right)$ , $\left(2.72, \frac{8}{3}\right)$ but coordinates do not<br>have to be paired and accept awrt 0.421, 2.72<br>and allow awrt 2.7 for $\frac{8}{3}$ . Ignore any other<br>coordinates given once the correct values<br>have been seen. | A1    |
|                    |                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                               | (5)   |

|     |                                                                      |                                                                                                                                                                                                                                                                                                                         | ,            |
|-----|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| (b) | $A = \dots \int (4\cos 2\theta)^2 \mathrm{d}\theta$                  | Indication that the integration of $(4\cos 2\theta)^2$<br>is required. Ignore any limits and ignore any<br>constant factors at this stage.                                                                                                                                                                              | M1           |
|     | $\cos^2 2\theta = \frac{1}{2}(1 + \cos 4\theta)$                     | A correct identity seen or implied.                                                                                                                                                                                                                                                                                     | A1           |
|     | $A = \dots \left[ \alpha \theta + \beta \sin 4\theta \right]$        | Integrates to obtain an expression of the form $\alpha\theta + \beta\sin 4\theta$ . Ignore any limits and ignore any constant factors. Dependent on the first method mark.                                                                                                                                              | <b>d</b> M1  |
|     | $=16\left[\theta+\frac{1}{4}\sin 4\theta\right]_{0}^{\frac{\pi}{4}}$ | A fully correct method that if evaluated<br>correctly would give the answer $4\pi$ . Note<br>that the correct "constant factor" may only be<br>applied at the very last stage of their working<br>and this method mark would only be awarded<br>at that point. <b>Dependent on all previous</b><br><b>method marks.</b> | <b>dd</b> M1 |
|     | Examples that could score the                                        | he final M1 (following correct work):                                                                                                                                                                                                                                                                                   |              |
|     | -                                                                    | $D_{-\frac{\pi}{4}}^{\frac{\pi}{4}}, 8\left[\theta + \frac{1}{4}\sin 4\theta\right]_{0}^{\frac{\pi}{2}}, 16\left[\theta + \frac{1}{4}\sin 4\theta\right]_{\frac{3\pi}{4}}^{\frac{\pi}{2}}$                                                                                                                              |              |
|     | $=4\pi$                                                              | cao                                                                                                                                                                                                                                                                                                                     | A1           |
|     |                                                                      |                                                                                                                                                                                                                                                                                                                         | (5)          |

#### Summer 2017 Past Paper (Mark Scheme)

www.mystudybro.com This resource was created and owned by Pearson Edexcel

### Mathematics F2

| WFM02 | • |
|-------|---|
|-------|---|

| (c) | $PQ = 2r\sin\theta = \frac{16}{3\sqrt{6}}$                                        | Correct expression or value for PQ or PQ/2.<br>E.g. $2\left(\frac{8}{3}\right)\frac{1}{\sqrt{6}}$ , $2\left(\frac{8}{3}\right)\sin 0.421$ ,<br>$2\left(\frac{8}{3}\right)\sin 2.72$ , $\frac{8\sqrt{6}}{9}$ or half of these.<br>May be implied by awrt 2.2 or awrt 1.1 | B1       |
|-----|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|     | $SP = 8 \text{ or } \frac{SP}{2} = 4$                                             | Correct value for SP or SP/2                                                                                                                                                                                                                                            | B1       |
|     | Area $PQRS = \frac{16}{3\sqrt{6}} \times 8 \left( = \frac{64\sqrt{6}}{9} \right)$ | Their $PQ \times SP$ . Must be the complete rectangle here.                                                                                                                                                                                                             | M1       |
|     | Required area $=$ $\frac{128}{3\sqrt{6}} - 4\pi$                                  | M1: Their rectangle area – their answer to<br>part (b)<br>A1: Correct exact answer or equivalent exact<br>form e.g. $\frac{64\sqrt{6}}{9} - 4\pi$ or allow awrt 4.8 or 4.9                                                                                              | M1A1     |
|     |                                                                                   |                                                                                                                                                                                                                                                                         | (5)      |
|     |                                                                                   |                                                                                                                                                                                                                                                                         | Total 15 |

## Mathematics F2

WFM02 Leave

blank

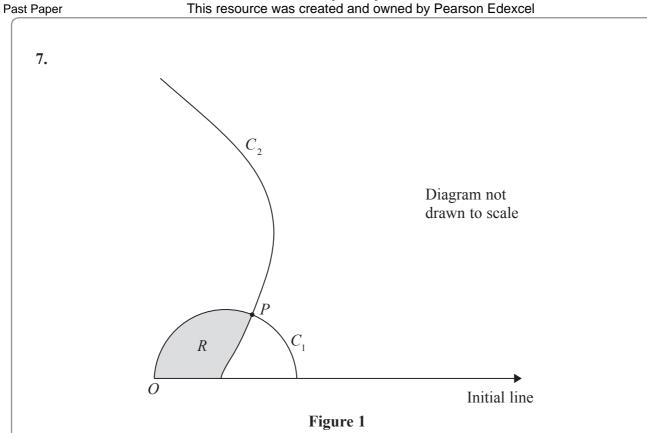



Figure 1 shows a sketch of the curves  $C_1$  and  $C_2$  with polar equations

$$C_1: r = \frac{3}{2}\cos\theta, \qquad 0 \le \theta \le \frac{\pi}{2}$$
$$C_2: r = 3\sqrt{3} - \frac{9}{2}\cos\theta, \qquad 0 \le \theta \le \frac{\pi}{2}$$

The curves intersect at the point P.

(a) Find the polar coordinates of *P*.

(3)

The region R, shown shaded in Figure 1, is enclosed by the curves  $C_1$  and  $C_2$  and the initial line.

(b) Find the exact area of *R*, giving your answer in the form  $p\pi + q\sqrt{3}$  where *p* and *q* are rational numbers to be found.

(8)

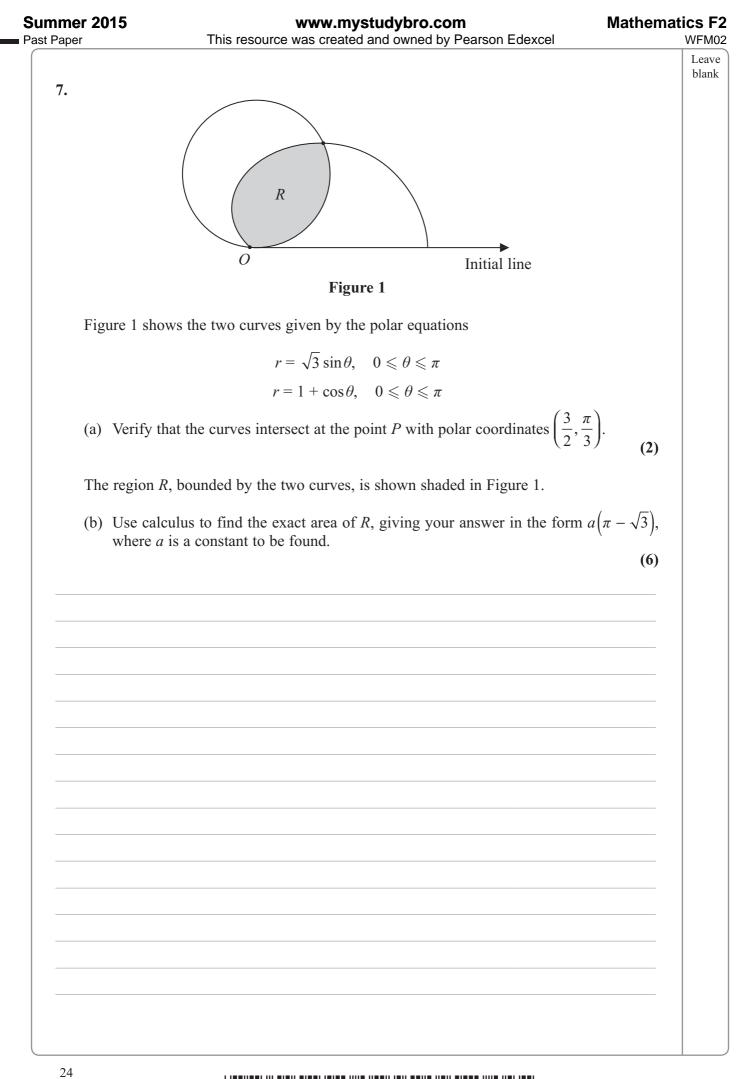


MSB - Page 9

#### Past Paper (Mark Scheme)

#### This resource was created and owned by Pearson Edexcel

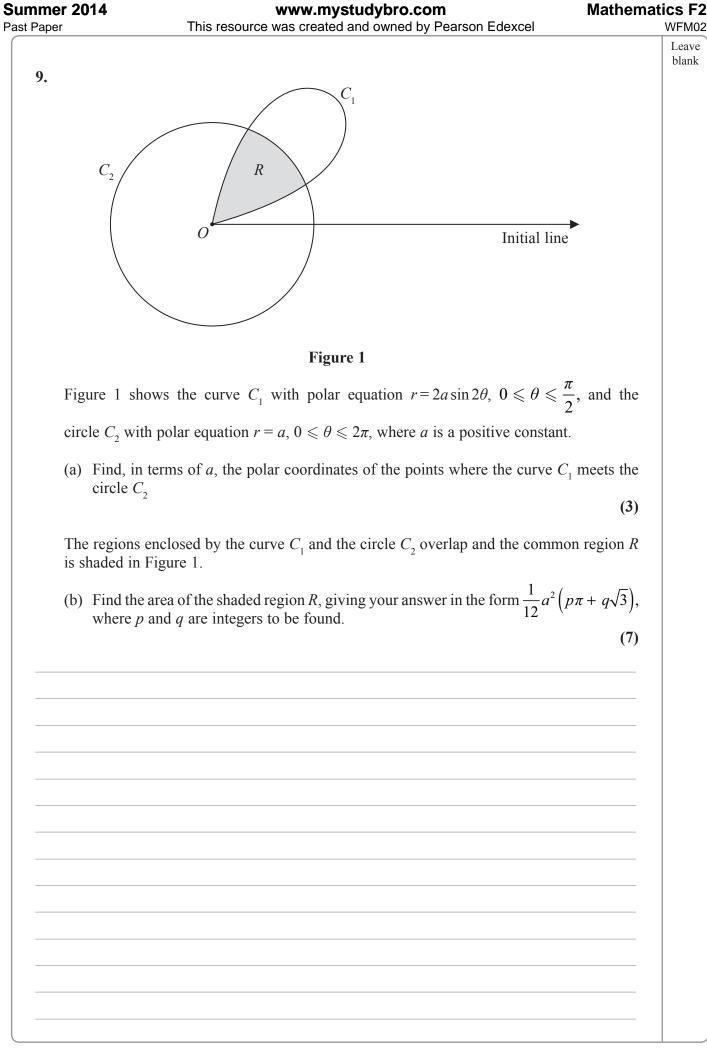
#### WFM02


| Question<br>Number | Scheme                                                                                                                                                                           | Notes                                                                                                                                           | Marks |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 7.                 | $C_1: r = \frac{3}{2}\cos\theta,$                                                                                                                                                | $C_2: r = 3\sqrt{3} - \frac{9}{2}\cos\theta$                                                                                                    |       |
| (a)                | $\frac{3}{2}\cos\theta = 3\sqrt{3} - \frac{9}{2}\cos\theta \Rightarrow \theta = \dots$<br>or<br>$\cos\theta = \frac{2r}{3} \Rightarrow r = 3\sqrt{3} - 3r \Rightarrow r = \dots$ | Puts $C_1 = C_2$ and attempt to solve for $\theta$<br>or<br>Eliminates $\cos \theta$ and solves for $r$                                         | M1    |
|                    | $\theta = \frac{\pi}{6}$ or $r = \frac{3\sqrt{3}}{4}$                                                                                                                            | Correct $\theta$ or correct $r$ .<br>Allow $\theta$ = awrt 0.524, $r$ = awrt 1.3                                                                | A1    |
|                    | $r = \frac{3\sqrt{3}}{4}$ and $\theta = \frac{\pi}{6}$                                                                                                                           | Correct <i>r</i> and $\theta$ (isw e.g. $\left(\frac{\pi}{6}, \frac{3\sqrt{3}}{4}\right)$ )<br>Allow $\theta$ = awrt 0.524, <i>r</i> = awrt 1.3 | A1    |
|                    |                                                                                                                                                                                  |                                                                                                                                                 | (3)   |

| 7(b) | $1 \int (2 \sqrt{2} - 9 \sqrt{2})^2 d\theta \sqrt{1} \int (3 \sqrt{2})^2 d\theta$                                                                                                                                                                                                             | N/1      |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|      | $\frac{1}{2} \int \left( 3\sqrt{3} - \frac{9}{2} \cos \theta \right)^2 d\theta  \text{or}  \frac{1}{2} \int \left( \frac{3}{2} \cos \theta \right)^2 d\theta$                                                                                                                                 | M1       |
|      | Attempts to use correct formula on either curve. The <sup>1</sup> / <sub>2</sub> may be implied by later work.                                                                                                                                                                                |          |
|      | $\left(3\sqrt{3} - \frac{9}{2}\cos\theta\right)^2 = 27 - 27\sqrt{3}\cos\theta + \frac{81}{4}\cos^2\theta = 27 - 27\sqrt{3}\cos\theta + \frac{81}{4}\frac{(\cos 2\theta + 1)}{2}$                                                                                                              | M1       |
|      | Expands to obtain an expression of the form $a + b \cos \theta + c \cos^2 \theta$ and attempts to use                                                                                                                                                                                         |          |
|      | $\cos^2 \theta = \pm \frac{1}{2} \pm \frac{\cos 2\theta}{2}$                                                                                                                                                                                                                                  |          |
|      | $\left(\frac{1}{2}\right) \int \left(3\sqrt{3} - \frac{9}{2}\cos\theta\right)^2 d\theta = \left(\frac{1}{2}\right) \left[\frac{297}{8}\theta - 27\sqrt{3}\sin\theta + \frac{81}{16}\sin 2\theta\right]$                                                                                       | M1A1     |
|      | M1: Attempts to integrate to obtain at least two terms from $\alpha\theta$ , $\beta\sin\theta$ , $\gamma\sin2\theta$                                                                                                                                                                          |          |
|      | A1: Correct integration with or without the $\frac{1}{2}$ (NB $\frac{297}{8} = 27 + \frac{81}{8}$ )                                                                                                                                                                                           |          |
|      | $\left[\frac{1}{2}\right]\left[\frac{297}{8}\theta - 27\sqrt{3}\sin\theta + \frac{81}{16}\sin 2\theta\right]_{0}^{\frac{\pi}{6}} = \left(\frac{1}{2}\right)\left\{\left(\frac{297}{8}, \frac{\pi}{6} - 27\sqrt{3}, \sin\frac{\pi}{6} + \frac{81}{16}\sin 2, \frac{\pi}{6}\right)(-0)\right\}$ | M1       |
|      | M1: Uses the limits 0 and their $\frac{\pi}{6}$                                                                                                                                                                                                                                               |          |
|      | If the substitution for $\theta = 0$ evaluates to 0 then the substitution for $\theta = 0$ does not need to be seen but if it does not evaluate to 0, the substitution for $\theta = 0$ needs to be seen.                                                                                     |          |
|      | $\frac{1}{2}\int \left(\frac{3}{2}\cos\theta\right)^2 d\theta = \frac{9}{16}\int (\cos 2\theta + 1)d\theta = \frac{9}{16}\left[\frac{1}{2}\sin 2\theta + \theta\right]_{\frac{\pi}{6}}^{\frac{\pi}{2}} = \frac{9}{16}\left(\frac{\pi}{3} - \frac{\sqrt{3}}{4}\right)$                         | M1       |
|      | M1: Uses $\cos^2 \theta = \pm \frac{1}{2} \pm \frac{\cos 2\theta}{2}$ , integrates to obtain at least $k \sin 2\theta$ and uses the limits                                                                                                                                                    |          |
|      | of their $\frac{\pi}{6}$ and $\frac{\pi}{2}$ to find the other area                                                                                                                                                                                                                           |          |
|      | NB can be done as a segment : $\frac{1}{2} \left(\frac{3}{4}\right)^2 \left(\frac{2\pi}{3}\right) - \frac{1}{2} \left(\frac{3}{4}\right)^2 \sin\left(\frac{\pi}{3}\right)$                                                                                                                    |          |
|      | Allow $\frac{1}{2} \left(\frac{3}{4}\right)^2 \left(\pi - 2 \times \text{their} \frac{\pi}{6}\right) - \frac{1}{2} \left(\frac{3}{4}\right)^2 \sin\left(\pi - 2 \times \text{their} \frac{\pi}{6}\right)$                                                                                     |          |
|      | $\frac{297}{96}\pi - \frac{351\sqrt{3}}{64} + \frac{9}{16}\left(\frac{\pi}{3} - \frac{\sqrt{3}}{4}\right) = \frac{105}{32}\pi - \frac{45}{8}\sqrt{3}$                                                                                                                                         | M1A1     |
|      | M1: Adds their two areas both of which are of the form $a\pi + b\sqrt{3}$                                                                                                                                                                                                                     |          |
|      | A1: Correct answer (allow equivalent fractions for $\frac{105}{32}$ and/or $\frac{45}{8}$ )                                                                                                                                                                                                   |          |
|      |                                                                                                                                                                                                                                                                                               | (8)      |
|      |                                                                                                                                                                                                                                                                                               | Total 11 |

WFM02

Special Case – Uses  $\pm (C_1 - C_2)$ 


| (b) | $\frac{1}{2} \int \left( 3\sqrt{3} - \frac{9}{2}\cos\theta - \frac{3}{2}\cos\theta \right)^2 \mathrm{d}\theta$                                                | M1 |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|     | Attempts to use correct formula on $\pm (C_1 - C_2)$ . The <sup>1</sup> / <sub>2</sub> may be implied by later work.                                          |    |
|     | $\left(3\sqrt{3} - 6\cos\theta\right)^2 = 27 - 36\sqrt{3}\cos\theta + 36\cos^2\theta = 27 - 36\sqrt{3}\cos\theta + 36\frac{(\cos 2\theta + 1)}{2}$            | M1 |
|     | Expands to obtain an expression of the form $a + b \cos \theta + c \cos^2 \theta$ and attempts to use                                                         |    |
|     | $\cos^2 \theta = \pm \frac{1}{2} \pm \frac{\cos 2\theta}{2}$                                                                                                  |    |
|     | $\left(\frac{1}{2}\right)\int \left(3\sqrt{3}-6\cos\theta\right)^2 d\theta = \left(\frac{1}{2}\right)\left[45\theta-36\sqrt{3}\sin\theta+9\sin2\theta\right]$ | M1 |
|     | Attempts to integrate to obtain at least two terms from $\alpha\theta$ , $\beta\sin\theta$ , $\gamma\sin2\theta$                                              |    |
|     | No more marks available                                                                                                                                       |    |
|     |                                                                                                                                                               |    |





Summer 2015 Past Paper (Mark Scheme) www.mystudybro.com This resource was created and owned by Pearson Edexcel Mathematics F2 WFM02

| Question | (Mark Scheme) I his resource was created and                                                                                                                                                                             |                                                                                                                              | VVFM02       |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------|
| Number   | Scheme                                                                                                                                                                                                                   | Notes                                                                                                                        | Marks        |
| 7(a)     | $\theta = \frac{\pi}{3} \Longrightarrow r = \sqrt{3}\sin\left(\frac{\pi}{3}\right) = \frac{3}{2}$                                                                                                                        | Attempt to verify coordinates in at least one of the polar equations                                                         | M1           |
|          | $\theta = \frac{\pi}{3} \Longrightarrow r = 1 + \cos\left(\frac{\pi}{3}\right) = \frac{3}{2}$                                                                                                                            | Coordinates verified in both curves<br>(Coordinate brackets not needed)                                                      | A1           |
|          |                                                                                                                                                                                                                          |                                                                                                                              | (2)          |
|          | Alternat                                                                                                                                                                                                                 | ive:                                                                                                                         |              |
|          | Equate rs: $\sqrt{3}\sin\theta = 1 + \cos\theta$ and verify (by<br>or solve by using $t = \tan\frac{\theta}{2}$                                                                                                          | 5                                                                                                                            | M1           |
|          | or writing $\frac{\sqrt{3}}{2}\sin\theta - \frac{1}{2}\cos\theta = \frac{1}{2}$ $\sin\left(\theta - \frac{\pi}{6}\right)$                                                                                                | ·                                                                                                                            |              |
|          | Squaring the original equation allowed as $\theta$ is                                                                                                                                                                    | known to be between 0 and $\pi$                                                                                              |              |
|          | Use $\theta = \frac{\pi}{3}$ in either equation to obtain $r = \frac{3}{2}$                                                                                                                                              |                                                                                                                              | A1           |
|          |                                                                                                                                                                                                                          |                                                                                                                              |              |
| (b)      | $\frac{1}{2}\int (\sqrt{3}\sin\theta)^2 \mathrm{d}\theta,  \frac{1}{2}\int (1+\cos\theta)^2 \mathrm{d}\theta$                                                                                                            | Correct formula used on at least one<br>curve (1/2 may appear later)<br>Integrals may be separate or added or<br>subtracted. | M1           |
|          | $=\frac{1}{2}\int 3\sin^2\theta \mathrm{d}\theta,  \frac{1}{2}\int (1+2\cos\theta+\cos^2\theta)\mathrm{d}\theta$                                                                                                         |                                                                                                                              |              |
|          | $= \left(\frac{1}{2}\right) \int \frac{3}{2} (1 - \cos 2\theta) d\theta,  \left(\frac{1}{2}\right) \int (1 - \cos 2\theta) d\theta$                                                                                      | $1+2\cos\theta+\frac{1}{2}(1+\cos 2\theta))d\theta$                                                                          |              |
|          | Attempt to use $\sin^2 \theta$ or $\cos^2 \theta = \pm$                                                                                                                                                                  | $\frac{1}{2} \pm \frac{1}{2} \cos 2\theta$ on either integral                                                                | M1           |
|          | Not dependent 1/2 may be missing                                                                                                                                                                                         |                                                                                                                              |              |
|          | $=\frac{3}{4}\left[\theta - \frac{1}{2}\sin 2\theta\right]_{(0)}^{\left(\frac{\pi}{3}\right)},  \frac{1}{2}\left[\frac{3}{2}\theta + 2\sin \theta + \frac{1}{4}\sin 2\theta\right]_{\left(\frac{\pi}{3}\right)}^{(\pi)}$ |                                                                                                                              | A1, A1       |
|          | Correct integration (ignore limits) A1A1 or A1A0                                                                                                                                                                         |                                                                                                                              |              |
|          | $R = \frac{3}{4} \left[ \frac{\pi}{3} - \frac{\sqrt{3}}{4} \left( -0 \right) \right] + \frac{1}{2} \left[ \frac{3\pi}{2} - \left( \frac{\pi}{2} + \sqrt{3} + \frac{\sqrt{3}}{8} \right) \right]$                         | Correct use of limits for both<br>integrals<br>Integrals must be added.<br>Dep on both previous M marks                      | <b>dd</b> M1 |
|          | $=\frac{3}{4}\left(\pi-\sqrt{3}\right)$                                                                                                                                                                                  | Cao<br>No equivalents allowed                                                                                                | A1           |
|          |                                                                                                                                                                                                                          |                                                                                                                              | (6)          |
|          |                                                                                                                                                                                                                          |                                                                                                                              | Total 8      |



P 4 4 5 1 7 A 0 2 8 3 2

28

| Question<br>Number | Scheme                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                           | Marks    |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 9.                 |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                           |          |
| (a)                | $a = 2a\sin 2\theta \Rightarrow \sin 2\theta = \frac{1}{2} \Rightarrow 2\theta = \dots$                                                                                                    | $C_1 = C_2$ and attempt to solve for $2\theta$                                                                                                                                                                                                                                                                                                                                                            | M1       |
|                    | $\sin 2\theta = \frac{1}{2} \Longrightarrow 2\theta = \frac{\pi}{6}, \frac{5\pi}{6}$                                                                                                       | $2\theta = \frac{\pi}{6} \operatorname{or} \frac{5\pi}{6} \operatorname{or} \operatorname{both}$ Decimals<br>allowed (min 3 sf).                                                                                                                                                                                                                                                                          | A1       |
|                    | $\left(a,\frac{\pi}{12}\right), \left(a,\frac{5\pi}{12}\right)$                                                                                                                            | Both points<br>Can be written $r = a$ , $\theta = \frac{\pi}{12}, \frac{5\pi}{12}$<br>Decimals allowed (min 3 sf).                                                                                                                                                                                                                                                                                        | A1       |
|                    |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                           | (3)      |
| (b)                | $\frac{1}{2} \times a^2 \times \frac{\pi}{3}$ oe                                                                                                                                           | Correct expression for the sector                                                                                                                                                                                                                                                                                                                                                                         | B1       |
|                    | $\frac{1}{2}\int r^2 d\theta = \frac{1}{2}\int (2a\sin 2\theta)^2 d\theta$                                                                                                                 | Use of correct formula Limits not needed (ignore any shown)                                                                                                                                                                                                                                                                                                                                               | M1       |
|                    | $\cos 4\theta = 1 - 2\sin^2 2\theta$ $\Rightarrow \sin^2 2\theta = \frac{1}{2}(1 - \cos 4\theta)$                                                                                          | Uses $\sin^2 2\theta = \frac{\pm 1 \pm \cos 4\theta}{2}$                                                                                                                                                                                                                                                                                                                                                  | M1       |
|                    | $\Rightarrow \sin^2 2\theta = \frac{1}{2} (1 - \cos 4\theta)$ $\int (1 - \cos 4\theta) d\theta = \theta - \frac{1}{4} \sin 4\theta$                                                        | Correct integration Limits not<br>needed (ignore any shown)                                                                                                                                                                                                                                                                                                                                               | A1       |
|                    | $I = a^{2} \left[ \theta - \frac{1}{4} \sin 4\theta \right]_{0}^{\frac{\pi}{12}}$ $= a^{2} \left\{ \left( \frac{\pi}{12} - \frac{1}{4} \sin 4 \cdot \frac{\pi}{12} \right) - (0) \right\}$ | An attempt to find one or both of<br>the regions either side of the sector.<br>ie uses limits $0, \frac{\pi}{12}$ and/or $\frac{5\pi}{12}, \frac{\pi}{2}$ ,<br>limits to be substituted and<br>subtracted (if non-zero after<br>substitution). Limits to be used the<br>correct way round. If two integrals<br>seen award mark if either correct.<br>Both previous method marks must<br>have been scored. | ddM1     |
|                    | $R = 2I + \frac{a^2 \pi}{6} = 2a^2 \left(\frac{\pi}{12} - \frac{\sqrt{3}}{8}\right) + \frac{a^2 \pi}{6}$                                                                                   | Correct strategy for the complete area (sector $+ 2I$ ). All areas must be positive.                                                                                                                                                                                                                                                                                                                      | M1       |
|                    | $R = \frac{1}{12}a^2\left(4\pi - 3\sqrt{3}\right)$                                                                                                                                         | If decimals seen anywhere (either<br>in rt 3 or the limits) this mark is<br>lost.                                                                                                                                                                                                                                                                                                                         | A1       |
|                    |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                           | (7)      |
|                    |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                           | Total 10 |