MyStudyBro - Revision Exercise Tool

This Revision Handout includes the Questions and Answers of a total of 5 exercises!

Chapters:

Exponentials and Logarithms - C12 (Pearson Edexcel)

Page 1	(WMA01) 2018 Winter
Page 2	(WMA01) 2018 Winter - Answer
Page 4	(WMA01) 2018 Summer
Page 5	(WMA01) 2018 Summer - Answer
Page 6	(WMA01) 2018 Autumn
Page 7	(WMA01) 2018 Autumn - Answer
Page 8	(WMA01) 2017 Winter
Page 9	(WMA01) 2017 Winter - Answer
Page 11	(WMA01) 2017 Summer
Page 12	(WMA01) 2017 Summer - Answer

www.mystudybro.com

■ Past Paper

This resource was created and owned by Pearson Edexcel

WMA01

Leave blank

10. (i) Use the laws of logarithms to solve the equation	
---	--

$$3\log_8 2 + \log_8 (7 - x) = 2 + \log_8 x$$

(5)

(ii) Using algebra, find, in terms of logarithms, the exact value of
$$y$$
 for which

$$3^{2y} + 3^{y+1} = 10$$

(5)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

W	NΛ	Λ.	വ
vv	IVI	м	.,,

Question Number	Scheme	Notes	Marks
10(i)	Examples: $3\log_8 2 = \log_8 2^3$, $3\log_8 2 = \log_8 8$ $3\log_8 2 = 1$, $\log_8 2 = \frac{1}{3}$, $2 = \log_8 64$	Demonstrates a law or property of logs on either of the constant terms.	B1
	Examples: $\log_{8}(7-x) - \log_{8} x = \log_{8} \frac{(7-x)}{x}$ $\log_{8} 64 + \log_{8} x = \log_{8} 64x$ $\log_{8} 8 + \log_{8}(7-x) = \log_{8} 8(7-x)$	Demonstrates the addition or subtraction law of logs on two terms, at least one of which is in terms of <i>x</i> .	B1
	possible. If there is some correct a	as described and award the marks where nd some incorrect work, do not look to ncorrect statements.	
	Correct processing leading to one	$\frac{1}{x} = 1, \log_8 \frac{(7-x)}{8x} = 0, \log_8 \frac{8(7-x)}{x} = 2$ e of these equations or the equivalent.	M1
	NB needs to be a correct equation. $8(7-x) = 64x, \frac{(7-x)}{x} = 8, \frac{7-x}{8x} = 1, \frac{8(7-x)}{x} = 64$ Correct equation with logs removed		
7 Accept equivalent		Accept equivalents but must be exact e.g. $\frac{56}{72}$ or 0.777 or 0.7 with a dot over the 7	A1
(ii)	22 v	2v+l 10	(5)
(11)	$3^{2y} + 3^{y+1} = 10$ $3^{y} \times 3^{y} + 3 \times 3^{y} = 10 \text{ or } 3^{y} (3^{y} + 3) = 10 \text{ or } (3^{y})^{2} + 3 \times 3^{y} = 10 \text{ or } x = 3^{y} \Rightarrow x^{2} + 3x = 10$ A correct quadratic in x (or 3^{y})		B1
	$x^2 + 3x - 10 = 0 \Rightarrow x = \dots$	Correct attempt to solve a quadratic equation of the form $ax^2 + bx \pm 10 = 0$ (may be a letter other than x or may be 3^y etc.)	M1
	x=2 or x=2 and -5	Correct values.	A1
	$3^{y} = 2 \Rightarrow y = \log_{3} 2 \text{ or } \frac{\log 2}{\log 3}$	Correct use of logs. Need to see $3^y = k \Rightarrow y = \log_3 k$ or $\frac{\log k}{\log 3}$, $k > 0$ which may be implied by awrt 0.63. Allow lg and ln for log.	dM1
	$y = \log_3 2 \text{ or } y = \frac{\log 2}{\log 3}$	Cao (And no incorrect work using "-5"). Give BOD but penalise very sloppy notation e.g. log3(2) for log ₃ 2 if necessary.	A1
			(5) Total 10
			I Utai IV

Mathematics C12

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

WMA01

(ii)	$3^{2y} + 3^{y+1} = 10$		
Way 2	$3^{2y} + 3^{y+1} = (3^2)^y + 3(9)^{0.5y}$ $\Rightarrow 9^y + 3(9)^{0.5y} = 10$	Correct quadratic in 9 ^{0.5y}	B1
	M1: Correct attempt to solve a quadratic equation of the form $ax^{2} + 3x - 10 = 0 \Rightarrow x = 2 \text{ (or } -5)$ $ax^{2} + bx - 10 = 0 \text{ (may be a letter other than } x \text{ or may be } 9^{0.5y} \text{ etc.)}$ A1: Correct solution(s)		M1A1
Correct use of logs. Need to		Correct use of logs. Need to see $9^{0.5y} = k \Rightarrow 0.5y = \log_9 k$ or $\frac{\log k}{\log 9}, k > 0$	dM1
	$y = 2\log_9 2$ or $y = \frac{2\log 2}{\log 9}$ Cao (And no incorrect work using "-5")		A1
			(5)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

■ Past Paper

6. Find the exact values of *x* for which

$$2\log_5(x+5) - \log_5(2x+2) = 2$$

Give your answers as simplified surds.

(7)

www.mystudybro.com

This resource was created and owned by Pearson Edexcel

Mathematics C12

Question Number	Scheme	Marks
6.	Use or state $2\log_5(x+5) = \log_5(x+5)^2$	M1
	Use or states $\log_5(x+5)^2 - \log_5(2x+2) = \log_5\frac{(x+5)^2}{(2x+2)}$ or $\log_5(2x+2) + \log_5 5^2 = \log_5 5^2(2x+2)$ etc	M1
	Use or state $\log_5 25 = 2$ $(x+5)^2 = 25(2x+2)$ or equivalent $x^2 - 40x - 25 = 0$	M1
	$(x+5)^2 = 25(2x+2)$ or equivalent	A1
	$x^2 - 40x - 25 = 0$	A1
	Solves their quadratic to give $x = ($ use formula, calculator or completing the square $)$ $x = 20 \pm 5\sqrt{17}$	M1 A1 [7]
		7 marks

Notes

M1: Uses or states $2\log_5(x+5) = \log_5(x+5)^2$ Can be scored without sight of the base 5 of the log

M1: Uses addition (or subtraction) law correctly at least once. Can be scored without sight of the base 5 on the log

This may follow an incorrect line. Eg. $\log_5 2(x+5) - \log_5 (2x+2) = \log_5 \frac{2(x+5)}{(2x+2)}$ would be fine for this mark as would

$$\log_5 10 + \log_5 (2x+2) = \log_5 10(2x+2)$$
 but $2\log_5 (x+5) - \log_5 (2x+2) = 2\log_5 \frac{(x+5)}{(2x+2)}$ would not score this mark as it is

incorrect subtraction law. If the lhs is going to score this mark, the coefficient of "2" must have been dealt with.

M1: Connects 2 with 25 OR 5 ² correctly

A1: Correct equation, not involving logs, in any form (un-simplified). Dependent upon all 3 M's being awarded.

A1: Obtains correct 3TQ Dependent upon all 3 M's being awarded.

M1: Solves a 3TQ by formula, calculator or completing the square to give a surd answer.

A1: CSO
$$x = 20 \pm 5\sqrt{17}$$

If they reject one of the solutions, usually $x = 20 - 5\sqrt{17}$ then withhold the final mark.

There are students who make two or more errors and fortuitously manage to form the correct equation.

Eg
$$2\log_{5}(x+5) - \log_{5}(2x+2) = 2 \Rightarrow \frac{2\log_{5}(x+5)}{\log_{5}(2x+2)} = 2 \Rightarrow \frac{\log_{5}(x+5)^{2}}{\log_{5}(2x+2)} = 2 \Rightarrow \frac{(x+5)^{2}}{(2x+2)} = 5^{2}$$

This student scores M1 (shown) M0 (incorrect subtraction law), M1 (shown).

As they have not scored the 3 M marks they only have access to the final M for a total 3 out of 7

Students who start $2\log_5(x+5) = 2\log_5 2 + 2\log_5 5$ will only have access to M3

■ Past Paper

blank

WMA01 Leave

13. (i) Find the value of x for which

$$4^{3x+2} = 3^{600}$$

giving your answer to 4 significant figures.

(3)

(ii) Given that

$$\log_a (3b-2) - 2\log_a 5 = 4, \quad a > 0, a \neq 1, b > \frac{2}{3}$$

find an expression for b in terms of a.

(4)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Mathematics C12

WMA01

Overtion		T	T
Question Number	Scheme	Notes	Marks
13(i)	$\log 4^{3x+2} = (3x+2)\log 4 (\text{allow } 3x + 2\log 4)$ $\log 3^{600} = 600\log 3$ $\log_4 4^{3x+2} = 3x + 2$ $\log_3 3^{600} = 600$ $3x + 2 = \log_4 3^{600}$	Evidence of the application of the power law of logarithms or the definition of a logarithm. This is independent of any other working – see examples. Generally this is for e.g. $\log_x y^k = k \log_x y$ or $\log_x x^k = k$ or $\log y^k = k \log y$ etc. where x, y and k are any variables/numbers.	M1
	Examples: $x = \frac{1}{3} \left(\frac{600 \log 3}{\log 4} - 2 \right)$ or $x = \frac{600 \log_4 3 - 2}{3}$ or $x = \frac{\frac{600}{\log_3 4} - 2}{3}$	This mark is for a correct expression or a correct value for x . Note that it must be an expression that can be evaluated e.g. $x = \frac{\log_4 3^{600} - 2}{3}$ is A0. May be implied by awrt 158 following correct work.	A1
	x = 157.8	Cao (Must be this value not awrt)	A1
			(3)
(ii)	$2\log_a 5 = \log_a 25 \text{ or } \log_a 5^2$		B1
	$\log_{a} (3b-2) - \log_{a} 25 = \log_{a} \frac{(3b-2)}{25}$ or $\log_{a} 25 + \log_{a} a^{4} = \log_{a} 25a^{4}$	Correct use of subtraction or addition rule	M1
	$a^{4} = \frac{3b - 2}{25}$ $b = \frac{25a^{4} + 2}{3}$	Removes logs correctly. Dependent on the previous M.	dM1
	$b = \frac{25a^4 + 2}{3}$	Cao oe e.g. $b = \frac{25a^4}{3} + \frac{2}{3}$	A1
			(4)
	Special Ca $\log_a (3b-2) - \log_a 25 = \log_a$ Scores B1M0d	$\frac{25}{3b-2} \Rightarrow a^4 = \frac{25}{3b-2}$	
			Total 7

WMA01

blank

Leave

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Past Paper

5. (a) Given that

$$y = \log_3 x$$

find expressions in terms of y for

(i)
$$\log_3\left(\frac{x}{9}\right)$$

(ii)
$$\log_3 \sqrt{x}$$

Write each answer in its simplest form.

(3)

(b) Hence or otherwise solve

$$2\log_3\left(\frac{x}{9}\right) - \log_3\sqrt{x} = 2$$

(4)

MSB - Page 8

W	/in	ter	20°	17

Math	ematics	C12
IVICE	ciliatios	O 1 Z

er 2017 Paper (Mark S	www.mystucheme) This resource was created and		nematics C
Paper (Mark S Question Number	Scheme) This resource was created and owned by Pearson Edexcel Scheme		
5 (a)(i)	$\log_3\left(\frac{x}{9}\right) = \log_3 x - \log_3 9 = y - 2$	M1: $\log_3\left(\frac{x}{9}\right) = \log_3 x - \log_3 9$ or $\log_3\left(\frac{x}{9}\right) = \log_3 x + \log_3\frac{1}{9}$ Correct use of the subtraction rule or addition rule. Ignore the presence or absence of a base and any spurious "= 0" A1: $y-2$	M1A1
	An answer left as log		
	Note that $\log_3\left(\frac{x}{9}\right) = \log_3 x - \log_3 x$		
(ii)	$\log_3 \sqrt{x} = \log_3 x^{\frac{1}{2}} = \frac{1}{2} \log_3 x = \frac{1}{2} y$	$\frac{1}{2}$ y or equivalent	B1
(I-)			
(b)	$2\log_{3}\left(\frac{x}{9}\right) - \log_{3}\sqrt{x} = 2$	$2 \Rightarrow 2(y-2) - \frac{1}{2}y = 2$	
	Uses their answers from part (a) to cre		M1
	poor use of brackets e.g. $2(y-2) = 2y-2$ and also the slip $(y-2) - \frac{1}{2}y = 2$		
	for this mark) $\Rightarrow y = 4$ Correct value for y.		
	$\Rightarrow y = 4$ Correct value for y.		
	Note that arriving at $(y-2)^2 - \frac{1}{2}y = 2$ above scores M0 (not linear) but does		
	have a solution $y = 4$ so look out for $x = 4 \Rightarrow x = 3^4$		
	$10\beta_3$ $X \rightarrow X \rightarrow X$	Correct method for undoing log. Dependent on the first M	d M1
	$\Rightarrow x = 81$	cao	A1
			(7 mar
	$2\log_3\left(\frac{x}{9}\right) - \log_3\sqrt{x}$	$\overline{x} = \log_3\left(\frac{\left(x/9\right)^2}{\sqrt{x}}\right)$	
	OI	•	M1
	$2\log_{3}\left(\frac{x}{9}\right) - \log_{3}\sqrt{x} = 2\log_{3}x - 2\log_{3}9 - \log_{3}\sqrt{x} = \log_{3}\frac{x^{2}}{\sqrt{x}} + \dots$		
	Combines two log terms in x correctly to obtain a single log term		
	$\log_{3}\left(\frac{\left(x/9\right)^{2}}{\sqrt{x}}\right) = 2$		
Alt 1 (b)	$\log_{3}\left(\frac{1}{\sqrt{x}}\right) = 2$		
	or	Correct equation	A1
	$\log_{3}\left(\frac{x^{2}}{\sqrt{x}}\right) = 6$		
	$\left(\frac{\left(x/9\right)^2}{\sqrt{x}}\right) = 3^2 \text{ or } \left(\frac{x^2}{\sqrt{x}}\right) = 3^6$	Correct method for undoing log. Dependent on the first M	d M1
	$\Rightarrow x = 81$	cao	A1

Mathematics C12

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

WMA01

Alt 2 (b) Uses $x = 3^{y}$	$2\log_{3}\left(\frac{x}{9}\right) - \log_{3}\sqrt{x} = 2\log_{3}\left(\frac{3}{9}\right)$ Combines logs	M1	
	$\log_{3}\left(\frac{3^{\frac{3y}{2}}}{81}\right) = 2 \Rightarrow y = 4$	Correct value for y	A1
	$\log_3 x = 4 \Longrightarrow x = 3^4$	Correct method for undoing log. Dependent on the first M	dM1
	$\Rightarrow x = 81$	cao	A1

blank

DO NOT WRITE IN THIS AREA

■ Past Paper

(i) Find the exact value of x for which

$$2\log_{10}(x-2) - \log_{10}(x+5) = 0$$

(5)

(ii) Given

$$\log_p(4y+1) - \log_p(2y-2) = 1$$
 $p > 2, y > 1$

express y in terms of p.

(5)

This resource was created and owned by Pearson Edexcel

st	<u>Paper (Mark S</u>	sper (Mark Scheme) This resource was created and owned by Pearson Edexcel		
	Question Number	Scheme	Marks	
	9(i)	$2\log_{10}(x-2) - \log_{10}(x+5) = 0 \Rightarrow \log_{10}(x-2)^2 = \log_{10}(x+5)$	M1	
		$\Rightarrow (x-2)^2 = (x+5)$	M1	
		$\Rightarrow x^2 - 5x - 1 = 0$	A1	
		$x = \frac{5 \pm \sqrt{29}}{2} \Rightarrow x = \frac{5 + \sqrt{29}}{2} \text{ only}$	M1,A1	
			(5)	
	(ii)	$\log_p (4y+1) - \log_p (2y-2) = 1 \Rightarrow \log_p (\frac{4y+1}{2y-2}) = \log_p p$	M1, M1	
		$\Rightarrow \left(\frac{4y+1}{2y-2}\right) = p$	A1	
		$\Rightarrow 4y + 1 = 2py - 2p \Rightarrow y = \frac{1 + 2p}{2p - 4}$	M1A1	
			(5) (10 marks)	
	l l		(Ad marks)	1

(i)

- M1 Use of the power law of logs
- M1 For 'undoing' the logs by either setting $\log_{10} ... = \log_{10} ...$ or using the subtraction law and $0 = \log_{10} 1$
- A1 A correct simplified quadratic $x^2 5x 1 = 0$
- M1 A correct attempt to find a solution to a 3TQ of equivalent difficulty (ie no factors). Allow formula, completing the square and use of a calculator giving exact or decimal answers
- A1 cso $\frac{5+\sqrt{29}}{2}$ or exact simplified equivalent without extra answers.

(ii)

- M1 Use of subtraction (or addition) law of logs
- M1 For using $1 = \log_p p$ or equivalent in an attempt to get an equation not involving logs.

 $\log_p(4y+1) - \log_p(2y-2) = 1 \Rightarrow (4y+1) - (2y-2) = p \text{ implies this and scores M0 M1.}$

- A1 A correct equation in p and y not involving logs. Accept $\left(\frac{4y+1}{2y-2}\right) = p^1$
- M1 Score for an attempt to change the subject. This must include cross multiplication, collection of terms in *y*, followed by factorisation of the *y* term.
- A1 cso $y = \frac{1+2p}{2p-4}$ or equivalent such as $y = \frac{-1-2p}{4-2p}$

Special cases in (i): Case 1 Allow the subtraction law either way around as the rhs of the equation will be 1

Case 2
$$\log_{10} \frac{(x-2)^2}{(x+5)} = 0 \Rightarrow \frac{(x-2)^2}{(x+5)} = 0 \Rightarrow (x-2)^2 = (x+5) \Rightarrow x^2 - 5x - 1 = 0$$

$$\Rightarrow x = \frac{5 + \sqrt{29}}{2} \text{ only will be awarded M1 M0 A1 M1 A0}$$

Special cases in (ii):
$$\log_p (4y+1) - \log_p (2y-2) = 1 \Rightarrow \frac{\log_p (4y+1)}{\log_p (2y-2)} = \log_p p \Rightarrow \left(\frac{4y+1}{2y-2}\right) = p^1$$

$$\Rightarrow 4y+1 = 2py-2p \Rightarrow y = \frac{1+2p}{2p-4} \text{ will be awarded M0 M1A1 M1 A0}$$