MyStudyBro - Revision Exercise Tool

This Revision Handout includes the Questions and Answers of a total of 5 exercises!

Chapters:

Page 11

Circular Measurements - C12 (Pearson Edexcel)

Page 1	(WMA01) 2018 Summer
Page 2	(WMA01) 2018 Summer - Answer
Page 3	(WMA01) 2018 Autumn Differentiation
Page 4	(WMA01) 2018 Autumn - Answer Also Includes: Differentiation
Page 6	(WMA01) 2017 Winter
Page 7	(WMA01) 2017 Winter - Answer
Page 8	(WMA01) 2017 Summer Trigonometry
Page 9	(WMA01) 2017 Summer - Answer Also Includes: Trigonometry
Page 10	(WMA01) 2017 Autumn

(WMA01) 2017 Autumn - Answer

DO NOT WRITE IN THIS AREA

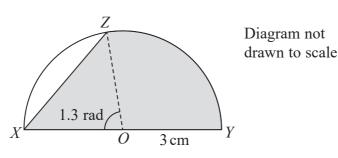


Figure 1

Figure 1 shows a semicircle with centre O and radius 3cm. XY is the diameter of this semicircle. The point Z is on the circumference such that angle XOZ = 1.3 radians. The shaded region enclosed by the chord XZ, the arc ZY and the diameter XY is a template for a badge.

Find, giving each answer to 3 significant figures,

(a) the length of the chord XZ,

(2)

(b) the perimeter of the template XZYX,

(4)

(c) the area of the template.

(4)

DO NOT WRITE IN THIS AREA

www.mystudybro.com

This resource was created and owned by Pearson Edexcel

Mathematics C12

Question Number	Scheme	Marks
10. (a)	$XZ^2 = 3^2 + 3^2 - 2 \times 3 \times 3\cos 1.3$, or $\sin 0.65 = \frac{x}{3}$ so $XZ = 2 \times x$	M1
	XZ = 3.63	A1 [2]
(b)	Arc length $ZY = 3 \times \theta$,= 3 × (π – 1.3) (= 5.52 / 5.53)	M1, A1
	Perimeter = $3 + 3 + \operatorname{arc} ZY + \operatorname{chord} XZ = 15.2 \text{ (cm)}$	dM1 A1 [4]
(c)	Area of triangle $OXZ = \frac{1}{2} \times 3 \times 3 \times \sin 1.3$ (=4.34)	M1
	Area of sector is $\frac{1}{2}r^2\theta = \frac{1}{2} \times 3^2 \times (\pi - 1.3)$ (= 8.28 / 8.29)	M1
	Total area is $\frac{1}{2} \times 3^2 \times (\pi - 1.3) + \frac{1}{2} \times 3 \times 3 \times \sin 1.3$	
		dM1
	$= 12.6 \text{ (cm}^2)$	A1
		[4]
		10 marks
	Notes	

(a)

M1: Uses cosine rule – must be correct. Allow $XZ^2 = 3^2 + 3^2 - 2 \times 3 \times 3 \cos 1.3$, for the M1 Or splits into right angled triangles correctly, uses sin 0.65 and then doubles the result

Uses angles in a triangle rule with the sine rule to find the required side. Eg $\frac{x}{\sin 1.3} = \frac{3}{\sin 0.92}$

awrt 3.63 A1:

(b)

M1: Arc length formula $r \theta$ with r = 3 and $\theta = 1.3$, $(\pi - 1.3)$ or $(2\pi - 1.3)$ If decimals are seen accept 1.8 or 5.0 If the degree formula is being used look for $\frac{\theta}{360} \times 2\pi r$ with $\theta = 74^{\circ} - 75^{\circ}$ or $\theta = 105^{\circ} - 106^{\circ}$

A1: Uses arc length formula with a correct angle. It does not need to be processed

Allow $3(\pi-1.3)$, 3×1.84 , awrt 5.52/5.53 In degrees look for the minimum accuracy of $\frac{105.5}{360}\times2\pi\times3$

dM1: Complete method for perimeter. It is dependent upon the previous M. Look for 6+(a)+ arc length

A1: awrt15.2 (cm) – you do not need to see units

(c)

M1: Uses area formula for triangle correctly. If $\frac{1}{2}bh$ is used it must be the correct combinations found using a correct method.

M1: Uses the formula $\frac{1}{2}r^2\theta$ to find the area of the correct sector. There must be some valid attempt to use the correct angle. Allow as a minimum awrt 1.8 radians (3.1-1.3)

dM1: Adds two correct area formulae together. Both M's must have been awarded

A1: Accept awrt 12.6 (do not need units)

Alt (c)

M1: Attempts to find the area of the segment $\frac{1}{2} \times 3^2 (1.3 - \sin 1.3)$

M1: Attempts area of semi circle along with the area of segment

dM1: Finds area of the semi circle - segment $\frac{\pi \times 3^2}{2} - \frac{1}{2} \times 3^2 (1.3 - \sin 1.3)$

A1: awrt 12.6

Past Paper

WMA01 Leave

blank

15.

0.8 radians

Figure 2

Figure 2 shows a plan for a garden.

The garden consists of two identical rectangles of width y m and length x m, joined to a sector of a circle with radius x m and angle 0.8 radians, as shown in Figure 2.

The area of the garden is 60 m².

(a) Show that the perimeter, P m, of the garden is given by

$$P = 2x + \frac{120}{x}$$
 (5)

(b) Use calculus to find the exact minimum value for P, giving your answer in the form $a\sqrt{b}$, where a and b are integers.

(4)

(c) Justify that the value of *P* found in part (b) is the minimum.

(2)

Autumn 2018

Mathematics C12

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

WMA01

Question Number	Scheme	Notes	Marks
15(a)	(Arc length =) 0.8x	Correct expression	B1
	P = 2x + 4y + 0.8x	$P = \alpha x + \beta y + "0.8x", \alpha, \beta \neq 0$	M1
	This may be implied by e.g. P	y = 2x + 4 (their y) + 0.8x	
	$2xy + \frac{1}{2}(0.8)x^2 = 60$	Correct equation for the area	B1
	$y = \frac{60 - 0.4x^2}{2x} \Rightarrow P = 4\left(\frac{60 - 0.4x^2}{2x}\right) + 2.8x$	Makes <i>y</i> the subject and substitutes	M1
	$P = \frac{120}{x} + 2x^*$	Obtains printed answer with no errors with $P =$ or Perimeter = appearing at some point.	A1*
	Note that it is sufficient to go from $P = 4$	$\left(\frac{60-0.4x^2}{2x}\right) + 2.8x \text{ to } P = \frac{120}{x} + 2x^*$	
			(5)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

WMA01

15(b)	Mark (b) and (c) t		
	Allow e.g. $\frac{dy}{dx}$ for $\frac{dP}{dx}$ and/o	For $\frac{d^2y}{dx^2}$ for $\frac{d^2P}{dx^2}$	
	$\frac{\mathrm{d}P}{\mathrm{d}x} = 2 - \frac{120}{x^2}$	Correct derivative	B1
	$2 - \frac{120}{x^2} = 0 \Rightarrow x = \sqrt{60}$	$\frac{dP}{dx} = 0$ and solves for x. Must be fully correct algebra for their $\frac{dP}{dx} = 0$ which is solvable.	M1
	$P = \frac{120}{\sqrt{60}} + 2\sqrt{60}$ h	Substitutes into P , a positive x which has come from an attempt to solve heir $\frac{dP}{dx} = 0$	M1
	, , , , , , , , , , , , , , , , , , ,	Correct exact answer. Cso.	A1
	Note that if $\frac{dP}{dx} = 2 + \frac{120}{x^2}$ is obtained, this could	d score a maximum of B0M0M1A0	
	if a positive value of x is su		(1)
(c)			(4)
	$\left(\frac{d^{2}P}{dx^{2}}\right) = \frac{240}{x^{3}} = \frac{240}{\left(\sqrt{60}\right)^{3}}$	Attempts the second derivative $x^n \to x^{n-1}$ seen at least once allow $k \to 0$ as evidence) and then ubstitutes at least one positive value of x from their $\frac{dP}{dx} = 0$ or makes eference to the sign of the second derivative provided they have a positive x .	M1
	$\left(\frac{d^2P}{dx^2}\right) = \frac{240}{\left(\sqrt{60}\right)^3} \Rightarrow \frac{d^2P}{dx^2} > $	and the correct value of x . In of the second derivative. Correctly allow this mark if the other met. $\frac{P}{2}$ being positive must also include a tax is positive.	A1
	Allow alternation e.g. considers values of P either dP	ther side of $\sqrt{60}$ or	
	values of $\frac{dP}{dx}$ either side of $\frac{dP}{dx}$		
	and then A1 if a full reason and	i conclusion is given.	(2)
			Total 11

Past Paper

Leave blank

DO NOT WRITE IN THIS AREA

3.

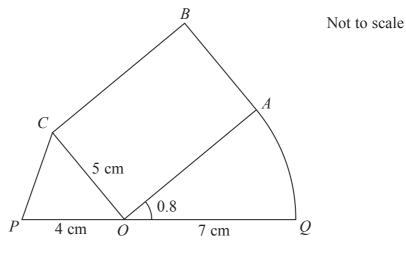


Figure 1

The shape *POQABCP*, as shown in Figure 1, consists of a triangle *POC*, a sector *OQA* of a circle with radius 7 cm and centre O, joined to a rectangle OABC.

The points P, O and Q lie on a straight line.

PO = 4 cm, CO = 5 cm and angle AOQ = 0.8 radians.

(a) Find the length of arc AQ.

(2)

(b) Find the size of angle *POC* in radians, giving your answer to 3 decimal places.

(2)

(c) Find the perimeter of the shape *POOABCP*, in cm, giving your answer to 2 decimal places.

(4)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Paper (Mark 3	Triis resource was created at	na emied sy'r eareen Edexee.	VVIVIAUT
Question Number	Sch	eme	Marks
3(a)	$S = r\theta = 7 \times 0.8 = 5.6$ (cm)	M1: Uses $S = r\theta$ A1: 5.6 oe e.g. 28/5	M1A1
	Note that if the 0.8 is converted to	degrees e.g. $0.8 \times \frac{180}{\pi} = 45.8366$,	
		or truncated when attempting	
	$\frac{45.8366}{360} \times 2 \times \pi \times 7 \text{ for the}$	M1 so allow A1 for awrt 5.6	
			(2)
(b)		M1: Attempts to find $\frac{\pi}{2}$ – 0.8 or	
	$\angle POC = \frac{\pi}{2} - 0.8 = \text{awrt } 0.771$	$\pi - \frac{\pi}{2} - 0.8$. Allow an attempt to	M1A1
	2 0.0 - awit 0.771	find θ from $\theta + \frac{\pi}{2} + 0.8 = \pi$.	1411711
		Accept as evidence awrt 0.77	
		A1: awrt 0.771	
		only can score M1A0	
	e.g. 180-90-0.8	$\times \frac{160}{\pi} (= 44.163)$	
			(2)
(c)	$4^{2} + 5^{2} - 2 \times 4 \times 5 \cos'(0.771')$ or $\sqrt{4^{2} + 5^{2} - 2 \times 4 \times 5 \cos'(0.771')}$	Correct use of the cosine rule to find CP or CP^2 . NB 0.771 radians is awrt 44 degrees. Ignore lhs for this mark and look for e.g. $4^2 + 5^2 - 2 \times 4 \times 5 \cos' 0.771$ or 44'	M1
	$CP^{2} = 4^{2} + 5^{2} - 2 \times 4 \times 5 \cos 0.771$ or $CP = \sqrt{4^{2} + 5^{2} - 2 \times 4 \times 5 \cos 0.771}$	A correct expression for <i>CP</i> or <i>CP</i> ² with lhs consistent with rhs. Allow awrt 0.77 radians or awrt 44 degrees. (May be implied if a correct numerical value is used in	A1
	Perimeter = $4+5+2\times7+'5.6'+'3.5'$	subsequent work) $4+5+2\times7+$ their $AQ+$ their CP . Need to see all 6 lengths but may be implied by e.g. $23+'5.6'+'3.5'$	M1
	= 32.11 (cm)	Awrt 32.11 (ignore units)	A1
		(-0	(4)
			(8 marks)

DO NOT WRITE IN THIS AREA

Past Paper

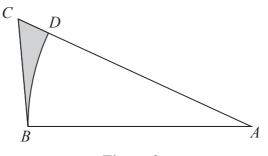


Figure 2

Figure 2 shows a sketch of a design for a triangular garden ABC.

The garden has sides BA with length 10 m, BC with length 6 m and CA with length 12 m.

The point D lies on AC such that BD is an arc of the circle centre A, radius 10 m.

A flowerbed *BCD* is shown shaded in Figure 2.

(a) Find the size of angle BAC, in radians, to 4 decimal places.

(2)

(b) Find the perimeter of the flowerbed *BCD*, in m, to 2 decimal places.

(3)

(c) Find the area of the flowerbed BCD, in m^2 , to 2 decimal places.

(4)

www.mystudybro.com

Mathematics C12

Past Paper (Mark Scheme)

This resource was created and owned by Pearson Edexcel

٧v	/M	ΑC)1

Question Number	Scheme	Marks
6(a)	$\cos \angle BAC = \frac{12^2 + 10^2 - 6^2}{2 \times 12 \times 10} \Rightarrow \angle BAC = 0.5223$	M1A1
(b)	Arc $BD = r\theta = 10 \times 0.5223$ Perimeter = 6+2+ 10×0.5223=13.22 (m)	(2) M1 dM1,A1 (3)
(c)	Area of sector $BAD = \frac{1}{2}r^2\theta = \frac{1}{2} \times 10^2 \times 0.5223$ (= 26.116)	M1
	Area of triangle $ABC \frac{1}{2} ab \sin C = \frac{1}{2} \times 12 \times 10 \times \sin 0.5223$ (= 29.932) Area of flowerbed $BCD = \frac{1}{2} \times 12 \times 10 \times \sin 0.5223 - \frac{1}{2} \times 10^2 \times 0.5223$	M1 dM1
	$= 3.81 / 3.82 \text{ (m}^2\text{)}$	A1 (4) (9 marks)

(a)

- M1 Attempts use of the formula $6^2 = 10^2 + 12^2 2 \times 10 \times 12 \cos A$ or $\cos \angle BAC = \frac{12^2 + 10^2 6^2}{2 \times 12 \times 10}$ The sides must be in the correct "position" within the formula. Condone different notation Eg. θ
- A1 $\angle BAC = \text{awrt } 0.5223$

The angle in degrees (awrt 29.9°) is A0

(b)

- M1 Attempts arc formula: In radians uses Arc $BD = r\theta = 10 \times "0.5223"$ In degrees uses Arc $BD = \frac{\theta}{360} \times 2\pi r = \frac{"29.9"}{360} \times 2\pi \times 10$
- dM1 Dependent upon the arc formula having been used. It is for calculating the perimeter as 8 + arc length.
- A1 Perimeter = awrt 13.22(m)

(c)

- M1 Attempts area of sector formula: Area of sector $BAD = \frac{1}{2}r^2\theta = \frac{1}{2}\times10^2\times"0.5223"$ In degrees uses Area of sector $BAD = \frac{\theta}{360}\times\pi r^2 = \frac{"29.9"}{360}\times\pi\times10^2$
- Attempts area of triangle formula: Area of triangle $ABC = \frac{1}{2}ab\sin C = \frac{1}{2} \times 12 \times 10 \times \sin^{\circ} 0.5223^{\circ}$ You may see Herons formula used with $S = \frac{10+6+12}{2} = (14)$ and $A = \sqrt{S(S-10)(S-6)(S-12)}$ Watch for other methods including the calculation of a perpendicular.
- dM1 Dependent upon both correct formulae. It is scored for finding area of triangle area of sector A1 Allow awrt 3.81 or 3.82 (m²)

WMA01

blank

Leave

8.

Past Paper

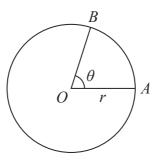


Figure 3

Figure 3 shows a circle with centre O and radius r cm.

The points A and B lie on the circumference of this circle.

The minor arc AB subtends an angle θ radians at O, as shown in Figure 3.

Given the length of minor arc AB is 6 cm and the area of minor sector OAB is $20 \, \text{cm}^2$,

(a) write down two different equations in r and θ .

(2)

(b) Hence find the value of r and the value of θ .

(4)

www.mystudybro.com

This resource was created and owned by Pearson Edexcel

Mathematics C1

WMA01

Question Number	Scheme	Marks
8.(a)	$r\theta = 6$ and $\frac{1}{2}r^2\theta = 20$	B1 B1
		[2]
(b)	Substitute $r\theta = 6$ into $\frac{1}{2}r^2\theta = 20 \Rightarrow \frac{1}{2} \times 6r = 20$	M1
	$\Rightarrow r = \frac{20}{3}$	A1
	Substitutes $r = \frac{20}{3}$ in $r\theta = 6 \Rightarrow \theta = \frac{9}{10}$	dM1A1
		[4]
		(6 marks)

This may be marked as one complete question. Eg they may just give the equations $s = r\theta$ and $A = \frac{1}{2}r^2\theta$ in (a) Don't penalise this sort of error.

(a)

B1 Either
$$r\theta = 6$$
 or $\frac{1}{2}r^2\theta = 20$ (or exact equivalents)
Allow $\frac{\theta}{2\pi} \times 2\pi r = 6$ or $\frac{\theta}{2\pi} \times \pi r^2 = 20$ but not $\frac{\theta}{360} \times 2\pi r = 6$ or $\frac{\theta}{360} \times \pi r^2 = 20$

Both $r\theta = 6$ and $\frac{1}{2}r^2\theta = 20$ (or exact equivalents) **B**1 Allow $\frac{\theta}{2\pi} \times 2\pi r = 6$ and $\frac{\theta}{2\pi} \times \pi r^2 = 20$ but not $\frac{\theta}{360} \times 2\pi r = 6$ and $\frac{\theta}{360} \times \pi r^2 = 20$

(b)

M1Combines two equations in r and θ producing an equation in one unknown.

 $r = \frac{20}{3}$ or $\theta = \frac{9}{10}$ or exact equivalents. A₁

You may just see answers following correct equations. This is fine for all the marks

This is dependent upon having started with two equations with correct expressions in r and θ dM1 Look for $..r\theta = ...$ and $..r^2\theta = ...$.

It is awarded for correctly substituting their value of r or θ into one of the equations to find the second unknown.

 $r = \frac{20}{3}$ and $\theta = \frac{9}{10}$ or exact equivalents. Condone 6.6 for $\frac{20}{3}$ Do not allow 6.67 **A**1