MyStudyBro - Revision Exercise Tool

This Revision Handout includes the Questions and Answers of a total of 5 exercises!

Chapters:

Exponentials and Logarithms - C3 (Pearson Edexcel)

- Page 1 (6665) 2018 Summer
- Page 2 (6665) 2018 Summer Answer
- Page 4 (6665) 2017 Summer
- Page 5 (6665) 2017 Summer Answer
- Page 6 (6665) 2016 Summer
- Page 7 (6665) 2016 Summer Answer
- Page 9 (6665) 2015 Summer
- Page 10 (6665) 2015 Summer Answer
- Page 12 (6665) 2014 Summer
- Page 13 (6665) 2014 Summer Answer

Leave blank

3. The value of a car is modelled by the formula

 $V = 16\,000e^{-kt} + A, \qquad t \ge 0, t \in \mathbb{R}$

where V is the value of the car in pounds, t is the age of the car in years, and k and A are positive constants.

Given that the value of the car is ± 17500 when new and ± 13500 two years later,

- (a) find the value of A,
- (b) show that $k = \ln\left(\frac{2}{\sqrt{3}}\right)$ (4)

(c) Find the age of the car, in years, when the value of the car is $\pounds 6000$

Give your answer to 2 decimal places.

(4)

(1)

Question Number	Scheme	Marks
3 (a)	A=1500	B1 (1)
(b)	Sub $t = 2, V = 13500 \Rightarrow 16000e^{-2k} = 12000$	M1
	$\Rightarrow e^{-2k} = \frac{3}{4}$ 0.75 oe	A1
	$\Rightarrow k = -\frac{1}{2}\ln\frac{3}{4}, = \ln\sqrt{\frac{4}{3}} = \ln\left(\frac{2}{\sqrt{3}}\right)$	dM1, A1*
		(4)
(c)	Sub $6000 = 16000e^{-\ln\left(\frac{2}{\sqrt{3}}\right)T} + '1500' \Rightarrow e^{-\ln\left(\frac{2}{\sqrt{3}}\right)T} = C$	M1
	$\Rightarrow e^{-\ln\left(\frac{2}{\sqrt{3}}\right)T} = \frac{45}{160} = 0.28125$	A1
	$\Rightarrow T = -\frac{\ln\left(\frac{45}{160}\right)}{\ln\left(\frac{2}{\sqrt{3}}\right)} = 8.82$	M1 A1
		(4)
		(9 marks)
Alt (b)	Sub $t = 2, V = 13500 \Rightarrow 13500 = 16000e^{-2k} + 1500' \Rightarrow 1600e^{-2k} = 1200$	M1
	$\Rightarrow \ln 1600 - 2k = \ln 1200$	A1
	$\Rightarrow k = -\frac{1}{2} \ln \frac{1200}{1600}, = \ln \sqrt{\frac{4}{3}} = \ln \left(\frac{2}{\sqrt{3}}\right)$	dM A1*
		(4)

You may mark parts (a) and (b) together

(a)

B1: Sight of A = 1500

(b)

M1: Substitutes $t = 2, V = 13500 \Rightarrow 13500 = 16000e^{-2k} + 'their 1500' and proceeds to <math>Pe^{-2k} = ...$ or $Qe^{2k} = ...$ Condone slips, for example, V may be 1350. It is for an **attempt** to make $e^{\pm 2k}$ the subject.

A1: $e^{-2k} = \frac{3}{4}$ 0.75 or $e^{2k} = \frac{4}{3}$ (1.3) oe

dM1: For taking ln's and proceeding to $k = \dots$ For example $k = -\frac{1}{2} \ln \frac{3}{4}$ oe

May be implied by the correct decimal answer awrt 0.144 . This mark cannot be awarded from impossible to solve equations, that is ones of the type $\Rightarrow e^{\pm 2k} = c$, $c \leq 0$

A1*: cso $k = \ln\left(\frac{2}{\sqrt{3}}\right)$ (brackets not required) with a correct intermediate line of either

$$\frac{1}{2}\ln\frac{4}{3}, \frac{1}{2}\ln 4 - \frac{1}{2}\ln 3, \ln\sqrt{\frac{4}{3}} \text{ or } \ln\left(\frac{3}{4}\right)^{-\frac{1}{2}}$$
Note: $e^{-2k} = \frac{3}{4} \Rightarrow e^{2k} = \frac{4}{3} \Rightarrow e^{k} = \frac{2}{\sqrt{3}}$ are perfectly acceptable steps

See scheme for alternative method when ln's are taken before e^{-2k} is made the subject.

It is also possible to substitute $k = \ln\left(\frac{2}{\sqrt{3}}\right)$ into $13500 = 16000e^{-k \times 2} + 1500$ and show that 12000 = 12000

or similar. This is fine as long as a minimal conclusion (eg \checkmark) is given for the A1*. (c)

M1: Sub $V = 6000 \Rightarrow 6000 = 16000e^{\pm kT} + \text{'their 1500'} and proceeds to <math>e^{\pm kT} = c$, c > 0

Allow candidates to write k = a wrt 0.144 or leave as 'k'. Condone slips on k. Eg $k = 2 \ln \left(\frac{2}{\sqrt{2}} \right)$

Allow this when the = sign is replaced by any inequality.

If the candidate attempts to simplify the exponential function score for $\left(\frac{2}{\sqrt{3}}\right)^{z_1} = c$, c > 0

A1:
$$e^{-\ln\left(\frac{2}{\sqrt{3}}\right)^T} = \frac{45}{160} = 0.28125$$
, $e^{-kT} = \frac{45}{160}$ or $\left(\frac{2}{\sqrt{3}}\right)^{-T} = \frac{45}{160}$ Condone inequalities for =

Allow solutions from rounded values (3sf). Eg. $e^{-0.144T} = 0.281$

M1: Correct order of operations using ln's and division leading to a value of T. It is implied by awrt 8.8

 $\left(\frac{2}{\sqrt{3}}\right)^{-1} = \frac{45}{160} \Rightarrow -T = \log_{\frac{2}{\sqrt{3}}} \frac{45}{160}$ is equivalent work for this M mark.

A1: cso 8.82 only following correct work. Note that this is not awrt Allow a solution using an inequality as long as it arrives at the solution 8.82.

There may be solutions using trial and improvement. Score (in this order) as follows

- **M1:** Trial at value of $V = 16000e^{-0.144 t} + 1500$ (oe) at either t = 8 or t = 9 and shows evidence $V_{t=8} = awrt\ 6500\ V_{t=9} = awrt\ 5900$ This may be implied by the subsequent M1
- M1: Trial at value of $V = 16000e^{-0.144 t} + 1500$ (oe) at either t = 8.81 or t = 8.82 and shows evidence. (See below for answers. Allow to 2sf)
- A1: Correct answers for V at both t = 8.81 and t = 8.82 $V_{t=8.81} = awrt\ 6006$ $V_{t=8.82} = awrt\ 5999$
- A1: Correctly deduces 8.82 with all evidence.

```
Hence candidates who just write down 8.82 will score 1, 1, 0, 0
```

.....

t Paper	2017 www.mystudybro.com This resource was created and owned by Pearson Edexcel	Mathematic	s C 660
		I	Leav
2.	Find the exact solutions, in their simplest form, to the equations		blanl
	(a) $e^{3x-9} = 8$	(3)	
	(b) $\ln(2y+5) = 2 + \ln(4-y)$	(4)	
		(ד)	

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

P 4 8 9 4 4 A 0 4 3 2

_	estion Imber	Scheme	Marks
2	2.(a)	$e^{3x-9} = 8 \Longrightarrow 3x - 9 = \ln 8$	M1
		$\Rightarrow x = \frac{\ln 8 + 9}{3}, = \ln 2 + 3$	A1, A1
	(b)	$\ln(2y + 5) = 2 + \ln(4 - y)$	(3)
		$\ln\left(\frac{2y+5}{4-y}\right) = 2$	M1
		$\left(\frac{2y+5}{4-y}\right) = e^2$	M1
		$2y+5 = e^2(4-y) \Longrightarrow 2y + e^2y = 4e^2 - 5 \Longrightarrow y = \frac{4e^2 - 5}{2+e^2}$	dM1, A1
			(4)
)			7 marks
It II (a) $x^{-3} = \sqrt[3]{3}$	l)	$e^{-8} \Rightarrow e^{3x} = 8e^9 \Rightarrow 3x = \ln(8e^9)$ for M1 (Condone slips on index work and lack $-3 = \ln(\sqrt[3]{8})$ for M1 (Condone slips on the 9. Eg $e^{x-9} = 2 \Rightarrow x-9 = \ln 2$)	
)) [1	Uses a c	correct method to combine two terms to create a single ln term.	
	Eg. Sco	re for $2 + \ln(4 - y) = \ln(e^2(4 - y))$ or $\ln(2y + 5) - \ln(4 - y) = \ln\left(\frac{2y + 5}{4 - y}\right)$	
[1	Condone slips on the signs and coefficients of the terms, but not on the e^2 Scored for an attempt to undo the ln's to get an equation in y This must be awarded after an attempt to combin		
		erms. Award for $\ln(g(y)) = 2 \Longrightarrow g(y) = e^2$ and can be scored eg where $g(y) = 2y$	
M1	It cannot be awarded for just $2y+5 = e^2 + 4 - y$ where the candidate attempts to undo term by term Dependent upon both previous M's. It is for making y the subject. Expect to see both terms in y collected and		
1		ed (may be implied) before reaching $y =$. Condone slips, for eg, on signs. $y = 2.61$ $\frac{x^2 - 5}{x + e^2}$ or equivalent such as $y = 4 - \frac{13}{2 + e^2}$ ISW after you see the correct an	
	Case: li		

6665

Mathematics C3

9. The amount of an antibiotic in the bloodstream, from a given dose, is modelled by the formula

$$x = D e^{-0.2t}$$

where x is the amount of the antibiotic in the bloodstream in milligrams, D is the dose given in milligrams and t is the time in hours after the antibiotic has been given.

A first dose of 15 mg of the antibiotic is given.

(a) Use the model to find the amount of the antibiotic in the bloodstream 4 hours after the dose is given. Give your answer in mg to 3 decimal places.

(2)

A second dose of 15 mg is given 5 hours after the first dose has been given. Using the same model for the second dose,

(b) show that the **total** amount of the antibiotic in the bloodstream 2 hours after the second dose is given is 13.754 mg to 3 decimal places.

(2)

No more doses of the antibiotic are given. At time T hours after the second dose is given, the total amount of the antibiotic in the bloodstream is 7.5 mg.

(c) Show that $T = a \ln\left(b + \frac{b}{e}\right)$, where *a* and *b* are integers to be determined.

(4)

DO NOT WRITE IN THIS AREA

MSB - Page 6

Past Paper (Mark Scheme)

Question	Scheme	Marks
9(a)	Subs $D = 15$ and $t = 4$ $x = 15e^{-0.2 \times 4} = 6.740 \ (mg)$	M1A1
(b)	$15e^{-0.2\times7} + 15e^{-0.2\times2} = 13.754(mg)$	(2) M1A1* (2)
(c)	$15e^{-0.2\times T} + 15e^{-0.2\times (T+5)} = 7.5$	M1 (2)
	$15e^{-0.2\times T} + 15e^{-0.2\times (T+5)} = 7.5$ $15e^{-0.2\times T} + 15e^{-0.2\times T}e^{-1} = 7.5$ $15e^{-0.2\times T} (1+e^{-1}) = 7.5 \Longrightarrow e^{-0.2\times T} = \frac{7.5}{15(1+e^{-1})}$	dM1
	$T = -5\ln\left(\frac{7.5}{15(1+e^{-1})}\right) = 5\ln\left(2+\frac{2}{e}\right)$	A1, A1
		(4) (8 marks)

(a)

M1 Attempts to substitute both D = 15 and t = 4 in $x = De^{-0.2t}$ It can be implied by sight of $15e^{-0.8}$, $15e^{-0.2\times4}$ or awrt 6.7 Condone slips on the power. Eg you may see -0.02

A1 CAO 6.740 (mg) Note that 6.74 (mg) is A0

(b)

M1 Attempt to find the sum of two expressions with D = 15 in both terms with t values of 2 and 7 Evidence would be $15e^{-0.2\times7} + 15e^{-0.2\times2}$ or similar expressions such as $(15e^{-1} + 15)e^{-0.2\times2}$

Award for the sight of the two numbers awrt **3.70** and awrt **10.05**, followed by their total awrt **13.75** Alternatively finds the amount after 5 hours, $15e^{-1} = awrt 5.52$ adds the second dose = **15** to get a total of awrt **20.52** then multiplies this by $e^{-0.4}$ to get awrt **13.75**. Sight of $5.52+15=20.52 \rightarrow 13.75$ is fine.

- A1* cso so both the expression $15e^{-0.2\times7} + 15e^{-0.2\times2}$ and 13.754(mg) are required Alternatively both the expression $(15e^{-0.2\times5} + 15) \times e^{-0.2\times2}$ and 13.754(mg) are required. Sight of just the numbers is not enough for the A1*
- (c)
- M1 Attempts to write down a correct equation involving *T* or *t*. Accept with or without correct bracketing Eg. accept $15e^{-0.2\times T} + 15e^{-0.2\times (T\pm 5)} = 7.5$ or similar equations $(15e^{-1} + 15)e^{-0.2\times T} = 7.5$

dM1 Attempts to solve their equation, dependent upon the previous mark, by proceeding to $e^{-0.2 \times T} = ...$ An attempt should involve an attempt at the index law $x^{m+n} = x^m \times x^n$ and taking out a factor of $e^{-0.2 \times T}$ Also score for candidates who make $e^{+0.2 \times T}$ the subject using the same criteria

A1 Any correct form of the answer, for example,
$$-5\ln\left(\frac{7.5}{15(1+e^{-1})}\right)$$

A1 CSO T = $5\ln\left(2+\frac{2}{e}\right)$ Condone *t* appearing for *T* throughout this question.

Alt (c) using lns

(c)
$$15e^{-0.2\times T} + 15e^{-0.2\times (T+5)} = 7.5$$

$$15e^{-0.2\times T} + 15e^{-0.2\times T}e^{-1} = 7.5$$

$$e^{-0.2\times T} (1+e^{-1}) = 0.5 \Rightarrow -0.2\times T + \ln(1+e^{-1}) = \ln 0.5$$

$$\Rightarrow T = \frac{\ln 0.5 - \ln(1+e^{-1})}{-0.2}, \Rightarrow T = 5\ln\left(2+\frac{2}{e}\right)$$
(4)
(8 marks)

You may see numerical attempts at part (c).

Such an attempt can score a maximum of two marks.

This can be achieved either by

Method One

1st Mark (Method):
$$15e^{-0.2 \times T} + awrt \ 5.52e^{-0.2 \times T} = 7.5 \Rightarrow e^{-0.2 \times T} = awrt \ 0.37$$

2nd Mark (Accuracy): T=-5ln (awrt 0.37) or awrt 5.03 or T=-5ln $\left(\frac{7.5}{awrt \ 20.52}\right)$

Method Two
1st Mark (Method):
$$13.754e^{-0.2 \times T} = 7.5 \Rightarrow T = -5\ln\left(\frac{7.5}{13.754}\right)$$
 or equivalent such as 3.03
2nd Mark (Accuracy): $3.03+2=5.03$ Allow $-5\ln\left(\frac{7.5}{13.754}\right)+2$

Method Three (by trial and improvement)

1st Mark (Method): $15e^{-0.2\times5} + 15e^{-0.2\times10} = 7.55$ or $15e^{-0.2\times5.1} + 15e^{-0.2\times10.1} = 7.40$ or any value between Answer T = 5.03.

mme Papei	r 2015 www.mystudybro.com This resource was created and owned by Pearson Edexo	Mathemati
	Water is being heated in an electric kettle. The temperature, θ °C, of the	
	after the kettle is switched on, is modelled by the equation	
	$\theta = 120 - 100 \mathrm{e}^{-\lambda t}, \qquad 0 \leqslant t \leqslant T$	
	(a) State the value of θ when $t = 0$	(1)
	Given that the temperature of the water in the kettle is 70 °C when $t = 4$	40,
	(b) find the exact value of λ , giving your answer in the form $\frac{\ln a}{b}$, with integers.	
		(4)
	When $t = T$, the temperature of the water reaches 100 °C and the kettle	switches off.
	(c) Calculate the value of T to the nearest whole number.	(2)

Question Number	Scheme	Marks
4(a)	$(\theta =)20$	B1 (1)
(b)	Sub $t = 40, \theta = 70 \Rightarrow 70 = 120 - 100 e^{-40\lambda}$	
	$\Rightarrow e^{-40\lambda} = 0.5$	M1A1
	$\Rightarrow \lambda = \frac{\ln 2}{40}$	M1A1
		(4)
(c)	$\theta = 100 \Rightarrow T = \frac{\ln 0.2}{-\text{their}'\lambda'}$	M1
	T = awrt 93	A1
		(2)
		(7 marks)
Alt (b)	Sub $t = 40, \theta = 70 \Rightarrow 100 e^{-40\lambda} = 50$	
	$\Rightarrow \ln 100 - 40\lambda = \ln 50$	M1A1
	$\Rightarrow \lambda = \frac{\ln 100 - \ln 50}{40} = \frac{\ln 2}{40}$	M1A1
		(4)

(a)

B1 Sight of
$$(\theta =)20$$

- (b)
- M1 Sub t = 40, $\theta = 70 \Rightarrow 70 = 120 100e^{-40\lambda}$ and proceed to $e^{\pm 40\lambda} = A$ where A is a constant. Allow sign slips and copying errors.
- A1 $e^{-40\lambda} = 05$ or $e^{40\lambda} = 2$ or exact equivalent
- M1 For undoing the e's by taking ln's and proceeding to $\lambda = ..$ May be implied by the correct decimal answer awrt 0.017 or $\lambda = \frac{\ln 0.5}{40}$
- A1 cso $\lambda = \frac{\ln 2}{40}$ Accept equivalents in the form $\frac{\ln a}{b}$, $a, b \in \mathbb{Z}$ such as $\lambda = \frac{\ln 4}{80}$
- (c)
- M1 Substitutes $\theta = 100$ and their numerical value of λ into $\theta = 120 100e^{-\lambda t}$ and proceed to $T = \pm \frac{\ln 0.2}{\text{their}'\lambda'}$ or $T = \pm \frac{\ln 5}{\text{their}'\lambda'}$ Allow inequalities here.
- A1 awrt T = 93

Watch for candidates who lose the minus sign in (b) and use $\lambda = \frac{\ln \frac{1}{2}}{40}$ in (c). Many then reach T = -93 and ignore the minus. This is M1 A0

n mei Paper	r 2014	www.mystudybro.com Mat This resource was created and owned by Pearson Edexcel Mat	hemati
		species of primrose is being studied. The population, P , of primroses at time t y ne study started is modelled by the equation	ears
		$P = \frac{800e^{0.1t}}{1 + 3e^{0.1t}}, \qquad t \ge 0, t \in \mathbb{R}$	
	(a) Ca	alculate the number of primroses at the start of the study.	(2)
		nd the exact value of t when $P = 250$, giving your answer in the form $a \ln(b)$ we and b are integers.	
		dP	(4)
	(c) Fi	nd the exact value of $\frac{dP}{dt}$ when $t = 10$. Give your answer in its simplest form.	(4)
	(d) Ez	xplain why the population of primroses can never be 270	(1)

Question Number	Scheme	Marks
8. (a)	$P = \frac{800e^0}{1+3e^0}, = \frac{800}{1+3} = 200$	M1,A1 (2)
(b)	$250 = \frac{800e^{0.1t}}{1 + 3e^{0.1t}}$ $250(1 + 3e^{0.1t}) = 800e^{0.1t} \Longrightarrow 50e^{0.1t} = 250, \implies e^{0.1t} = 5$	M1,A1
	$t = \frac{1}{0.1} \ln(5)$ $t = 10 \ln(5)$	M1 A1
		(4)
(c)	$P = \frac{800e^{0.1t}}{1+3e^{0.1t}} \Longrightarrow \frac{dP}{dt} = \frac{(1+3e^{0.1t}) \times 800 \times 0.1e^{0.1t} - 800e^{0.1t} \times 3 \times 0.1e^{0.1t}}{(1+3e^{0.1t})^2}$	M1,A1
	At t=10 $\frac{dP}{dt} = \frac{(1+3e) \times 80e - 240e^2}{(1+3e)^2} = \frac{80e}{(1+3e)^2}$	M1,A1
		(4)
(d)	$P = \frac{800e^{0.1t}}{1+3e^{0.1t}} = \frac{800}{e^{-0.1t}+3} \Longrightarrow P_{\text{max}} = \frac{800}{3} = 266 \text{ . Hence P cannot be 270}$	B1
		(1) (11 marks)
(a) M		t $P = \frac{800}{1+3}$
as Al	evidence 200. Accept this for both marks as long as no incorrect working is see	n.
(b)	$800e^{0.1t}$	

M1 Sub P=250 into $P = \frac{800e^{0.1t}}{1+3e^{0.1t}}$, cross multiply, collect terms in $e^{0.1t}$ and proceed to $Ae^{0.1t} = B$ Condone bracketing issues and slips in arithmetic. If they divide terms by $e^{0.1t}$ you should expect to see $Ce^{-0.1t} = D$ A1 $e^{0.1t} = 5$ or $e^{-0.1t} = 0.2$ M1 *t*=...

Accept $e^{0.1t} = E \Rightarrow 0.1t = \ln E \Rightarrow t = ...$ It could be implied by t = a wrt 16.1A1 $t = 10\ln(5)$ Accept exact equivalents of this as long as a and b are integers. Eg. $t = 5 \ln(25)$ is fine. (c)**M**1 Scored for a full application of the quotient rule and knowing that $\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{e}^{0.1t} = k\mathrm{e}^{0.1t}$ and NOT $kt\mathrm{e}^{0.1t}$ If the rule is quoted it must be correct. It may be implied by their $u = 800e^{0.1t}$, $v = 1 + 3e^{0.1t}$, $u' = pe^{0.1t}$, $v' = qe^{0.1t}$ followed by $\frac{vu'-uv'}{v^2}$. If it is neither quoted nor implied only accept expressions of the form $(1+3e^{0.1t}) \times pe^{0.1t} - 800e^{0.1t} \times qe^{0.1t}$ $(1+3e^{0.1t})^2$ Condone missing brackets. You may see the chain or product rule applied to For applying the product rule see question 1 but still insist on $\frac{d}{dt}e^{0.1t} = ke^{0.1t}$

Dependent upon gaining $e^{0.1t} = E$, for taking ln's of both sides and proceeding to

For the chain rule look for

$$P = \frac{800e^{0.1t}}{1+3e^{0.1t}} = \frac{800}{e^{-0.1t}+3} \Longrightarrow \frac{dP}{dt} = 800 \times (e^{-0.1t}+3)^{-2} \times -0.1e^{-0.1t}$$
A1 A correct unsimplified answer to
$$\frac{dP}{dt} = \frac{(1+3e^{0.1t}) \times 800 \times 0.1e^{0.1t} - 800e^{0.1t} \times 3 \times 0.1e^{0.1t}}{(1+3e^{0.1t})^2}$$

M1 For substituting t = 10 into their $\frac{dP}{dt}$, NOT P

Accept numerical answers for this. 2.59 is the numerical value if $\frac{dP}{dt}$ was correct

A1
$$\frac{dP}{dt} = \frac{80e}{(1+3e)^2}$$
 or equivalent such as $\frac{dP}{dt} = 80e(1+3e)^{-2}$, $\frac{80e}{1+6e+9e^2}$

Note that candidates who substitute t = 10 before differentiation will score 0 marks (d)

B1 Accept solutions from substituting P=270 and showing that you get an unsolvable equation

Eg.
$$270 = \frac{800e^{0.1t}}{1+3e^{0.1t}} \Rightarrow -27 = e^{0.1t} \Rightarrow 0.1t = \ln(-27)$$
 which has no answers.
Eg. $270 = \frac{800e^{0.1t}}{1+3e^{0.1t}} \Rightarrow -27 = e^{0.1t} \Rightarrow e^{0.1t} / e^x$ is never negative

Accept solutions where it implies the max value is 266.6 or 267. For example accept sight of $\frac{800}{3}$, with a comment 'so it cannot reach 270', or a large value of *t* (*t* > 99) being substituted in to get 266.6 or 267 with a similar statement, or a graph drawn with an asymptote marked at 266.6 or 267

Do not accept exp's cannot be negative or you cannot ln a negative number without numerical evidence.

Look for both a statement and a comment