MyStudyBro - Revision Exercise Tool

This Revision Handout includes the Questions and Answers of a total of 5 exercises!

Chapters:

Polynomials - FP1 (Pearson Edexcel)

Page 1	(6667) 2018 Summer
Page 2	(6667) 2018 Summer - Answer
Page 3	(6667) 2017 Summer
Page 4	(6667) 2017 Summer - Answer
Page 6	(6667) 2015 Summer
Page 7	(6667) 2015 Summer - Answer
Page 8	(6667) 2015 Summer
Page 9	(6667) 2015 Summer - Answer
Page 10	(6667) 2014R Summer
Page 11	(6667) 2014R Summer - Answer

Past Paper

Leave blank

DO NOT WRITE IN THIS AREA

1.
$$f(z) = 2z^3 - 4z^2 + 15z - 13$$

Given that $f(z) \equiv (z-1)(2z^2 + az + b)$, where a and b are real constants,

(a) find the value of a and the value of b.

(2)

(b) Hence use algebra to find the three roots of the equation f(z) = 0

(4)

Mathematics FP1 6667

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question Number	Scheme	Notes	Marks
1.	$f(z) = 2z^3 - 4z^2 + 15z - 13 \equiv (z - 1)(2z^2 + az + b)$		
(a)	a = -2, b = 13	At least one of either $a=-2$ or $b=13$ or seen as their coefficients.	B1
(4)	2,0 10	Both $a=-2$ and $b=13$ or seen as their coefficients.	B1
4.5			[2]
(b)	$\{z=\}$ 1 is a root	1 is a root, seen anywhere.	B1
	$\left\{2z^2 - 2z + 13 = 0 \Rightarrow z^2 - z + \frac{13}{2} = 0\right\}$		
	Either • $z = \frac{2 \pm \sqrt{4 - 4(2)(13)}}{2(2)}$	Correct method for solving a 3-term	
	or $\left(z - \frac{1}{2}\right)^2 - \frac{1}{4} + \frac{13}{2} = 0$ and $z =$	quadratic equation. Do not allow M1 here for an attempt at factorising.	M1
	or $(2z-1)^2-1+13=0$ and $z=$		
		At least one of either	
	So, $\{z=\}$ $\frac{1}{2} + \frac{5}{2}i$, $\frac{1}{2} - \frac{5}{2}i$	$\frac{1}{2} + \frac{5}{2}i$ or $\frac{1}{2} - \frac{5}{2}i$	A1
	2 2 2 2	or any equivalent form.	A 1.C4
		For conjugate of first complex root	A1ft [4]
			Total 6

Past Paper

Leave blank

DO NOT WRITE IN THIS AREA

Given that 4 and 2i - 3 are roots of the equation

$$x^3 + ax^2 + bx - 52 = 0$$

where a and b are real constants,

(a) write down the third root of the equation,

(1)

(b) find the value of a and the value of b.

(5)

Summer 2017 www.mystudybro.com
Past Paper (Mark Scheme) This resource was created and owned by Pearson Edexcel

6667

Question Number	Scheme		Marks
6.	$x^3 + ax^2 + bx - 52 = 0$, $a, b \in \mathbb{R}$, 4 and 2i – 3 are roots		
(a)	-2i-3	-2i-3 seen anywhere in solution for Q6.	B1 [1]
(b) Way 1	$(x-(2i-3))(x-"(-2i-3)"); = x^2+6x+13 \text{ or}$ $x = -3 \pm 2i \Rightarrow (x+3)^2 = -4; = x^2+6x+13(=0)$ $(x-4)(x-(2i-3)); = x^2-(1+2i)x+4(2i-3)$ $(x-4)(x-"(-2i-3)"); = x^2-(1-2i)x+4(-2i-3)$	Must follow from their part (a). Any incorrect signs for their part (a) in initial statement award M0; accept any equivalent expanded expression for A1.	M1; A1
	$(x-4)(x^2+6x+13)$ {= $x^3+ax^2+bx-52$ }	$(x-3^{rd} \text{ root})$ (their quadratic).	M1
	$a=2$, $b=-11$ or $x^3+2x^2-11x-52$	Could be found by comparing coefficients from long division. At least one of $a=2$ or $b=-11$ Both $a=2$ and $b=-11$	A1 A1 [5]
(b)	Sum = $(2i-3) + "(-2i-3)" = -6$	Attempts to apply either	M1
Way 2	Product = $(2i-3) \times "(-2i-3)" = 13$	$x^2 - (\text{sum roots})x + (\text{product roots}) = 0$	
	So quadratic is $x^2 + 6x + 13$	or $x^2 - 2\operatorname{Re}(\alpha)x + \left \alpha^2\right = 0$	
		$x^2 + 6x + 13$	A1
	$(x-4)(x^2+6x+13)$ {= $x^3+ax^2+bx-52$ }	$(x-3^{rd} \text{ root})$ (their quadratic)	M1
	$a=2$, $b=-11$ or $x^3+2x^2-11x-52$	At least one of $a=2$ or $b=-11$	A1
		Both $a=2$ and $b=-11$	A1
(b)	$(2^{1}, 2)^{3}$, $(2^{1}, 2)^{2}$, $(2^{2}, 2)$, $(2^{2}, 2)$		[5]
Way 3	$(2i-3)^3 + a(2i-3)^2 + b(2i-3) - 52 = 0$ 5a 3b - 43 (real parts) and 6a b - 23	Substitutes 2i 2 into the displayed	M1
way 5	5a-3b=43 (real parts) and $6a-b=23$ (imaginary parts) or uses $f(4)=0$ and $f(a complex root) = 0$ to form equations in a and b .	Substitutes $2i-3$ into the displayed equation and equates both real and imaginary parts. $5a-3b=43 \text{ and } 6a-b=23 \text{ or}$	A1
		$16a+4b=-12 \text{ and}$ $(2i-3)^3+a(2i-3)^2+b(2i-3)-52=0/$	
		$(-2i-3)^3 + a(-2i-3)^2 + b(-2i-3) - 52 = 0$	
	So $a = 2$, $b = -11$ or $x^3 + 2x^2 - 11x - 52$	Solves these equations simultaneously to find at least one of either $a =$ or $b =$	M1
		At least one of $a=2$ or $b=-11$	A1
		Both $a=2$ and $b=-11$	A1
(b) Way 4	b = sum of product pairs	Attempts sum of product pairs.	[5] M1
	= 4(2i-3) + 4"(-2i-3)" + (2i-3)"(-2i-3)"	All pairs correct o.e.	A1
	a = -(sum of 3 roots) = -(4 + 2i - 3'' - 2i - 3'')	Adds up all 3 roots	M1
	$a=2$, $b=-11$ or $x^3+2x^2-11x-52$	At least one of $a = 2$ or $b = -11$	A1
		Both $a=2$ and $b=-11$	A1 [5]

Summer 2017

www.mystudybro.com

Mathematics FP1 6667

Past Paper (Mark Scheme)

This resource was created and owned by Pearson Edexcel

(b) Uses f(4) = 0M1Way 5 16a + 4b = -12A1a = -(sum of 3 roots) = -(4 + 2i - 3'' - 2i - 3'')Adds up all 3 roots M1a=2, b=-11 or $x^3+2x^2-11x-52$ At least one of a=2 or b=-11A1 Both a=2 and b=-11A1[5] 6 ■ Past Paper

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

6667

	$f(x) = 9x^3 - 33x^2 - 55x - 25$
(Given that $x = 5$ is a solution of the equation $f(x) = 0$, use an algebraic method to
S	solve $f(x) = 0$ completely. (5)

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

June 2015 Further Pure Mathematics FP1 6667 **Mark Scheme**

Question Number	Scheme	Marks
1.	$(x-5)$ is a factor of $f(x)$ so $f(x) = (x-5)(9x^2$	M1
	$f(x) = (x-5)(9x^2 + 12x + 5)$	A1
	Solve $(9x^2 + 12x + 5) = 0$ to give $x =$	M1
	$(x=)-\frac{2}{3}-\frac{1}{3}i$, $-\frac{2}{3}+\frac{1}{3}i$ or $-\frac{2}{3}\pm\frac{1}{3}i$ or $\frac{-2\pm i}{3}$ oe (and 5)	A1cao A1ft (5) (5 marks)
	Notes M1: Uses $(x-5)$ as factor and begins division or process to obtain quadratic with $9x^2$. Award if no working but quadratic factor completely correct. A1: $9x^2 + 12x + 5$ M1: Solves their quadratic by usual rules leading to $x = $ Award if one complex root correct with no working. Award for $(9x^2 +$ incorrectly factorised to $(3x + p)(3x + q)$, where $ pq = 5$ A1: One correct complex root. Accept any exact equivalent form. Accept single fraction and \pm A1ft: Conjugate of their first complex root.	

www.mystudybro.com

■ Past Paper

This resource was created and owned by Pearson Edexcel

6667 Leave

blank

6. (i) Prove by induction that, for $n \in \mathbb{Z}^+$,

$$\begin{pmatrix} 1 & 0 \\ -1 & 5 \end{pmatrix}^n = \begin{pmatrix} 1 & 0 \\ -\frac{1}{4}(5^n - 1) & 5^n \end{pmatrix}$$

(6)

(ii) Prove by induction that, for $n \in \mathbb{Z}^+$,

$$\sum_{r=1}^{n} (2r-1)^{2} = \frac{1}{3}n(4n^{2}-1)$$

(6)

Past Paper (Mark Scheme)

This resource was created and owned by Pearson Edexcel

Question Number	Scheme	Marks
6. (i)	If $n = 1$, $\begin{pmatrix} 1 & 0 \\ -1 & 5 \end{pmatrix}^1 = \begin{pmatrix} 1 & 0 \\ -\frac{1}{4}(5^1 - 1) & 5^1 \end{pmatrix}$ so true for $n = 1$	B1
	Assume result true for $n = k$ $ \begin{pmatrix} 1 & 0 \\ -1 & 5 \end{pmatrix}^{k+1} = \begin{pmatrix} 1 & 0 \\ -\frac{1}{4}(5^k - 1) & 5^k \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -1 & 5 \end{pmatrix} \text{or } \begin{pmatrix} 1 & 0 \\ -1 & 5 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -\frac{1}{4}(5^k - 1) & 5^k \end{pmatrix} $	M1
	$ \begin{pmatrix} 1 & 0 \\ -1 & 5 \end{pmatrix}^{k+1} = \begin{pmatrix} 1 & 0 \\ -\frac{1}{4}(5^k - 1) - 5^k & 5 \times 5^k \end{pmatrix} \text{ or } \begin{pmatrix} 1 & 0 \\ -1 - 5 \cdot \frac{1}{4}(5^k - 1) & 5 \times 5^k \end{pmatrix} $	M1 A1
	$= \begin{pmatrix} 1 & 0 \\ -\frac{1}{4}5^k + \frac{1}{4} - 5^k & 5^{k+1} \end{pmatrix} \text{ or } \begin{pmatrix} 1 & 0 \\ -1 - \frac{1}{4}5^{k+1} + \frac{5}{4} & 5^{k+1} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -\frac{1}{4}(5^{k+1} - 1) & 5^{k+1} \end{pmatrix}$	A1
	True for $n = k + 1$ if true for $n = k$, (and true for $n = 1$) so true by induction for all $n \in \mathbb{Z}^+$.	A1cso (6)
(ii)	If $n = 1$, $\sum_{r=1}^{n} (2r-1)^2 = 1$ and $\frac{1}{3}n(4n^2-1) = 1$, so true for $n = 1$.	B1
	Assume result true for $n = k$ so $\sum_{r=1}^{k+1} (2r-1)^2 = \frac{1}{3}k(4k^2-1) + (2(k+1)-1)^2$	M1
	$= \sum_{r=1}^{k+1} (2r-1)^2 = \frac{1}{3} (2k+1) \{ (2k^2 - k) + (3(2k+1)) \}$	M1 A1
	$= \frac{1}{3}(2k+1)\{(2k^2+5k+3)\} \text{ or } \frac{1}{3}(k+1)(4k^2+8k+3) \text{ or } \frac{1}{3}((2k+3)(2k^2+3k+1))\}$	
	$= \frac{1}{3}(k+1)(2k+1)(2k+3) = \frac{1}{3}(k+1)(4(k+1)^2 - 1)$	dA1
	True for $n = k + 1$ if true for $n = k$, (and true for $n = 1$) so true by induction for all $n \in \mathbb{Z}^+$	A1cso (6)
		12 marks

Notes

(i) B1: Checks n = 1 on both sides and states true for n = 1 seen anywhere.

M1: Assumes true for n = k and indicates intention to multiply power k by power 1 either way around.

M1: Multiplies matrices. Condone one slip. A1: Correct unsimplified matrix

A1: Intermediate step required cao

A1: cso Makes correct induction statement including at least statements in bold.

Statement **true** for n = 1 here could contribute to B1 mark earlier.

(ii) B1: Checks n = 1 on both sides and states true for n = 1 seen anywhere.

M1: Assumes true for n = k and adds $(k+1)^{th}$ term to sum of k terms. Accept $4(k+1)^2 - 4(k+1) + 1$ or

 $(2k+1)^2$ for $(k+1)^{th}$ term. M1: Factorises out a linear factor of the three possible - usually 2k+1

A1: Correct expression with one linear and one quadratic factor.

dA1: Need to see $\frac{1}{3}(k+1)(4(k+1)^2-1)$ somewhere dependent upon previous A1.

Accept assumption plus $(k+1)^{\text{th}}$ term and $\frac{1}{3}(k+1)(4(k+1)^2-1)$ both leading to $\frac{1}{3}(4k^3+12k^2+11k+3)$

then award for expressions seen as above.

A1: cso Makes correct complete induction statement including at least statements in bold. Statement true for n = 1 here could contribute to B1 mark earlier.

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Leave	
blank	

$2z^3 - 3z^2 + 8z + 5 = 0$	
are z_1 , z_2 and z_3	
Given that $z_1 = 1 + 2i$, find z_2 and z_3	
	(5)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question Number	Cheme		Marks
1.	$f(z) = 2z^2$	$3^3 - 3z^2 + 8z + 5$	
	1-2i (is also a root)	seen	B1
	$(z-(1+2i))(z-(1-2i)) = z^2-2z+5$	Attempt to expand $(z - (1+2i))(z - (1-2i)) \text{ or any valid}$ method to establish the quadratic factor e.g. $z = 1 \pm 2i \Rightarrow z - 1 = \pm 2i \Rightarrow z^2 - 2z + 1 = -4$ $z = 1 \pm \sqrt{-4} = \frac{2 \pm \sqrt{-16}}{2} \Rightarrow b = -2, c = 5$ Sum of roots 2, product of roots 5 $\therefore z^2 - 2z + 5$	M1A1
	$f(z) = (z^2 - 2z + 5)(2z + 1)$	Attempt at linear factor with their cd in $(z^2 + az + c)(2z + d) = \pm 5$ Or $(z^2 - 2z + 5)(2z + a) \Rightarrow 5a = 5$	M1
	$\left(z_{3}\right) = -\frac{1}{2}$		A1
			(5)
			Total 5