MyStudyBro - Revision Exercise Tool

This Revision Handout includes the Questions and Answers of a total of 5 exercises!

Chapters:

Rates and Differential Equations - C4 (Pearson Edexcel)

- Page 1 (6666) 2018 Summer
- Page 2 (6666) 2018 Summer Answer
- Page 4 (6666) 2018 Summer
- Page 5 (6666) 2018 Summer Answer
- Page 7 (6666) 2017 Summer
- Page 8 (6666) 2017 Summer Answer
- Page 10 (6666) 2016 Summer
- Page 11 (6666) 2016 Summer Answer
- Page 13 (6666) 2015 Summer Partial Fractions

Page 14 (6666) 2015 Summer - Answer Also Includes: Partial Fractions

50 cm

4.

www.mystudybro.com This resource was created and owned by Pearson Edexcel

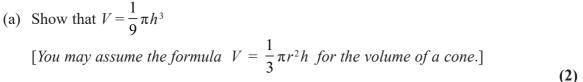
h cm

Figure 1

30

A water container is made in the shape of a hollow inverted right circular cone with

Mathematics C4 6666


Diagram not

drawn to scale

Leave blank

semi-vertical angle of 30°, as shown in Figure 1. The height of the container is 50 cm. When the depth of the water in the container is $h \, \text{cm}$, the surface of the water

Given that the volume of water in the container increases at a constant rate of $200 \text{ cm}^3 \text{ s}^{-1}$,

(b) find the rate of change of the depth of the water, in cm s⁻¹, when h = 15Give your answer in its simplest form in terms of π .

has radius $r \,\mathrm{cm}$ and the volume of water is $V \,\mathrm{cm}^3$.

(4)

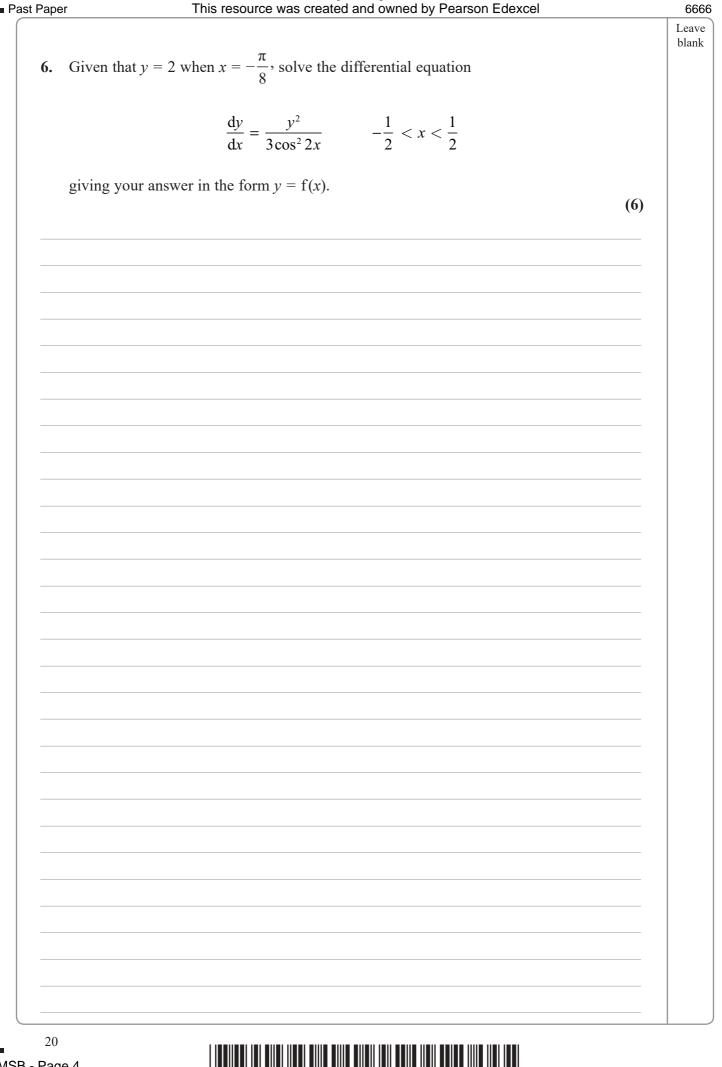
DO NOT WRITE IN THIS ARE

Summer 2018www.mystudybro.comPast Paper (Mark Scheme)This resource was created and owned by Pearson Edexcel

Past Paper (I	(Mark Scheme) This resource was created and owned by Pearson Edexcel				
Question Number	Scheme		Notes	Marks	
4. (a)	$\frac{r}{h} = \tan 30 \Rightarrow r = h \tan 30 \left\{ \Rightarrow r = \frac{h}{\sqrt{3}} \text{ or } r = \frac{h}{\sqrt{3}} \right\}$ or $\frac{h}{r} = \tan 60 \Rightarrow r = \frac{h}{\tan 60} \left\{ \Rightarrow r = \frac{h}{\sqrt{3}} \text{ or } r = \frac{\sqrt{3}}{3} \right\}$ or $\frac{r}{\sin 30} = \frac{h}{\sin 60} \Rightarrow r = \frac{h \sin 30}{\sin 60} \left\{ \Rightarrow r = \frac{h}{\sqrt{3}} \text{ or } r = \frac{h}{\sqrt{3}} \right\}$ or $h^2 + r^2 = (2r)^2 \Rightarrow r^2 = \frac{1}{3}h^2$	$\left\{\frac{3}{2}h\right\}$	Correct use of trigonometry to find r in terms of h or correct use of Pythagoras to find r^2 in terms of h^2	M1	
	$\left\{ V = \frac{1}{3}\pi r^2 h \Longrightarrow \right\} V = \frac{1}{3}\pi \left(\frac{h}{\sqrt{3}}\right)^2 h \Longrightarrow V = \frac{1}{9}\pi h^3 *$	Or sl	proof of $V = \frac{1}{9}\pi h^3$ or $V = \frac{1}{9}h^3\pi$ hows $\frac{1}{9}\pi h^3$ or $\frac{1}{9}h^3\pi$ with some efference to $V =$ in their solution	A1 *	
(b) Way 1	$\frac{\mathrm{d}V}{\mathrm{d}t} = 200$			[2]	
	$\frac{\mathrm{d}V}{\mathrm{d}h} = \frac{1}{3}\pi h^2$		$\frac{1}{3}\pi h^2$ o.e.	B1	
	Either • $\left\{ \frac{dV}{dh} \times \frac{dh}{dt} = \frac{dV}{dt} \Rightarrow \right\} \left(\frac{1}{3} \pi h^2 \right) \frac{dh}{dt} = 200$ • $\left\{ \frac{dh}{dt} = \frac{dV}{dt} \div \frac{dV}{dh} \Rightarrow \right\} \frac{dh}{dt} = 200 \times \frac{1}{\frac{1}{3} \pi h^2}$		either $\left(\text{their } \frac{\mathrm{d}V}{\mathrm{d}h} \right) \times \frac{\mathrm{d}h}{\mathrm{d}t} = 200$ or $200 \div \left(\text{their } \frac{\mathrm{d}V}{\mathrm{d}h} \right)$	M1	
	When $h = 15, \ \frac{dh}{dt} = 200 \times \frac{1}{\frac{1}{3}\pi(15)^2} \left\{ = \frac{200}{75\pi} = \frac{600}{225\pi} \right\}$		dependent on the previous M mark	dM1	
	$\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{8}{3\rho} (\mathrm{cms}^{-1})$		$\frac{8}{3\rho}$	A1 cao	
				[4] 6	
(b) Way 2	$\frac{\mathrm{d}V}{\mathrm{d}t} = 200 \implies V = 200t + c \implies \frac{1}{9}\pi h^3 = 200t + c$				
	$\left(\frac{1}{3}\pi h^2\right)\frac{\mathrm{d}h}{\mathrm{d}t} = 200$		$\frac{1}{3}\pi h^2$ o.e.	B1	
	When		as in Way 1 dependent on the previous M	M1	
	$h = 15, \ \frac{\mathrm{d}h}{\mathrm{d}t} = 200 \times \frac{1}{\frac{1}{3}\pi(15)^2} \left\{ = \frac{200}{75\pi} = \frac{600}{225\pi} \right\}$		mark	dM1	
	$\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{8}{3\rho} (\mathrm{cms^{-1}})$		$\frac{8}{3\rho}$	A1 cao [4]	
		1		["]	

Summer 2018 Past Paper (Mark Scheme)

www.mystudybro.com This resource was created and owned by Pearson Edexcel


Mathematics C4

		Question 4 Notes		
4. (a)	Note	Allow M1 for writing down $r = h \tan 30$		
	Note	Give M0 A0 for writing down $r = \frac{h\sqrt{3}}{3}$ or $r = \frac{h}{\sqrt{3}}$ with no evidence of using trigonometry		
		on <i>r</i> and <i>h</i> or Pythagoras on <i>r</i> and <i>h</i>		
	Note	Give M0 (unless recovered) for evidence of $\frac{1}{3}\pi r^2 h = \frac{1}{9}\pi h^3$ leading to either $r^2 = \frac{1}{3}h^2$		
		or $r = \frac{h\sqrt{3}}{3}$ or $r = \frac{h}{\sqrt{3}}$		
(b)	B 1	Correct simplified or un-simplified differentiation of V. E.g. $\frac{1}{3}\pi h^2$ or $\frac{3}{9}\pi h^2$		
	Note	$\frac{dV}{dh}$ does not have to be explicitly stated, but it should be clear that they are differentiating their V		
	M1	$\left(\text{their } \frac{\mathrm{d}V}{\mathrm{d}h} \right) \times \frac{\mathrm{d}h}{\mathrm{d}t} = 200 \text{ or } 200 \div \left(\text{their } \frac{\mathrm{d}V}{\mathrm{d}h} \right)$		
	dM1	dependent on the previous M mark		
		Substitutes $h=15$ into an expression which is a result		
		of either $200 \div \left(\text{their } \frac{dV}{dh} \right)$ or $200 \times \frac{1}{\left(\text{their } \frac{dV}{dh} \right)}$		
	A1 $\frac{8}{3p}$ (units are not required)			
	Note	Give final A0 for using $\frac{dV}{dt} = -200$ to give $\frac{dh}{dt} = -\frac{8}{3\pi}$, unless recovered to $\frac{dh}{dt} = \frac{8}{3\pi}$		

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Question			N	
Number		Scheme	Notes	Marks
6.	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{3}$	$\frac{y^2}{\cos^2 2x}$; $-\frac{1}{2} < x < \frac{1}{2}$; $y = 2$ at $x = -\frac{\pi}{8}$		
		$\frac{1}{2} dy = \int \frac{1}{3\cos^2 2x} dx$	Separates variables as shown Can be implied by a correct attempt at integration Ignore the integral signs	B1
	$\int \frac{1}{y^2}$	$dy = \int \frac{1}{3} \sec^2 2x dx$		
		$1 1(\tan 2r)$	$\pm \frac{A}{y^2} \rightarrow \pm \frac{B}{y}; \ A, B \neq 0$ $\pm \lambda \tan 2x$	M1
		$-\frac{1}{y} = \frac{1}{3} \left(\frac{\tan 2x}{2} \right) \{+c\}$		M1
		· · · ·	$-\frac{1}{y} = \frac{1}{3} \left(\frac{\tan 2x}{2} \right)$	A1
		$1 \ 1 \ (.(\pi))$	Use of $x = -\frac{\pi}{8}$ and $y = 2$ in an	
		$-\frac{1}{2} = \frac{1}{6} \tan\left(2\left(-\frac{\pi}{8}\right)\right) + c$	integrated equation <i>containing a</i> <i>constant of integration</i> , e.g. <i>c</i>	M1
	-	$-\frac{1}{2} = -\frac{1}{6} + c \Longrightarrow c = -\frac{1}{3}$ $-\frac{1}{y} = \frac{1}{6}\tan 2x - \frac{1}{3} = \frac{\tan(2x) - 2}{6}$		
	-			
	y =	$\frac{-1}{\frac{1}{6}\tan 2x - \frac{1}{3}} \text{ or } y = \frac{6}{2 - \tan 2x} \text{ or } y = \frac{6\cot 2}{-1 + 2\cot 2x}$	$\frac{2x}{\operatorname{pt} 2x} \left\{ -\frac{1}{2} < x < \frac{1}{2} \right\}$	A1 o.e.
				[6] 6
		Question 6 I	Notes	0
6.	Separates variables as shown, dy and dx should be in the correct positions, though the correct positions are the correct positions.		l signs. The number "3" may appear on	
	Note	Allow e.g. $\int \frac{1}{y^2} \frac{dy}{dx} dx = \int \frac{1}{3} \sec^2 2x dx \text{ for B1}$		
	Note	B1 can be implied by correct integration of both	n sides	
	M1	$\pm \frac{A}{y^2} \to \pm \frac{B}{y}; \ A, B \neq 0$		
	M1	$\frac{1}{\cos^2 2x} \text{ or } \sec^2 2x \to \pm \lambda \tan 2x; \lambda \neq 0$		
	A1	$-\frac{1}{y} = \frac{1}{3} \left(\frac{\tan 2x}{2} \right)$ with or without '+ c'. E.g	$-\frac{6}{y} = \tan 2x$	
	M1	Evidence of using both $x = -\frac{\pi}{8}$ and $y = 2$ in an	integrated or changed equation contain	ing c
	Note Note	This mark can be implied by the correct value of You may need to use your calculator to check the	of c	
	Note	Condone using $x = \frac{\pi}{8}$ instead of $x = -\frac{\pi}{8}$		
	A1	$y = \frac{-1}{\frac{1}{6}\tan 2x - \frac{1}{3}}$ or $y = \frac{6}{2 - \tan 2x}$ or any equ		= f(x)
MSB	Note Page 5	You can ignore subsequent working, which foll	ows from a correct answer	

MSB - Page 5

		Question 6 Notes Continued
6.	Note	Writing $\frac{dy}{dx} = \frac{y^2}{3\cos^2 2x} \implies \frac{dy}{dx} = \frac{1}{3}y^2 \sec^2 2x$ leading to e.g.
		• $y = \frac{1}{9} y^3 \left(\frac{1}{2} \tan 2x\right)$ gets 2 nd M0 for $\pm \lambda \tan 2x$
		• $u = \frac{1}{3}y^2$, $\frac{dv}{dx} = \sec^2 2x \Longrightarrow \frac{du}{dx} = \frac{2}{3}y$, $v = \frac{1}{2}\tan 2x$ gets 2^{nd} M0 for $\pm \lambda \tan 2x$
		because the variables have not been separated

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

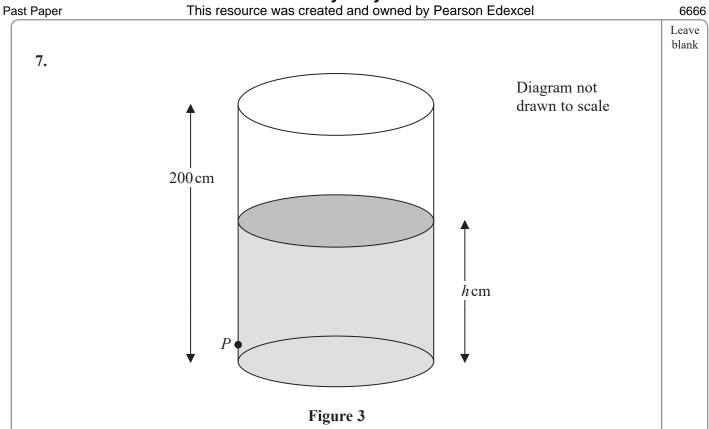


Figure 3 shows a vertical cylindrical tank of height 200 cm containing water. Water is leaking from a hole *P* on the side of the tank.

At time *t* minutes after the leaking starts, the height of water in the tank is *h* cm.

The height h cm of the water in the tank satisfies the differential equation

$$\frac{\mathrm{d}h}{\mathrm{d}t} = k(h-9)^{\frac{1}{2}}, \qquad 9 < h \leqslant 200$$

where *k* is a constant.

Given that, when h = 130, the height of the water is falling at a rate of 1.1 cm per minute,

(a) find the value of *k*.

(2)

Given that the tank was full of water when the leaking started,

(b) solve the differential equation with your value of k, to find the value of t when h = 50

(6)

MSB - Page 7

Summer 2017

Past Paper (Mark Scheme)

www.mystudybro.com This resource was created and owned by Pearson Edexcel

	Mark Scheme) I his resource was created and owned by Pearson Edexcel		6666	
Question Number	Scheme		Notes	Marks
7.	$\frac{\mathrm{d}h}{\mathrm{d}t} = k \sqrt{(h-9)}, 9 < h \in 200; h$			
(a)	$-1.1 = k \sqrt{(130 - 9)} \bowtie k =$.30 and either $\frac{dh}{dt} = -1.1$ or $\frac{dh}{dt} = 1.1$ d equation and rearranges to give $k =$	
	so, $k = -\frac{1}{10}$ or -0.1		$k = -\frac{1}{10}$ or -0.2	A1
				[2]
(b) Way 1	$\int \frac{\mathrm{d}h}{\sqrt{(h-9)}} = \int k \mathrm{d}t$	the wrong position	es correctly. dh and dt should not be in ns, although this mark can be implied by later working. Ignore the integral signs	y B1
	$\int (h-9)^{-\frac{1}{2}} \mathrm{d}h = \int k \mathrm{d}t$			
	<u>1</u>	Integrates $-$	$\frac{\pm\lambda}{\sqrt{(h-9)}}$ to give $\pm m\sqrt{(h-9)}$; /, m^{-1} () M1
	$\frac{(h-9)^{\frac{1}{2}}}{\left(\frac{1}{2}\right)^{\frac{1}{2}}} = kt(+c)$	$\frac{(h-9)^{\frac{1}{2}}}{\left(\frac{1}{2}\right)} = kt \text{or}$	$\frac{(h-9)^{\frac{1}{2}}}{\left(\frac{1}{2}\right)} = (\text{their } k)t, \text{with/without } + c$, A1
		or equivale	nt, which can be un-simplified or simplified	
			Some evidence of applying bot	
	${t = 0, h = 200 \triangleright} 2\sqrt{(200 - 9)} =$		t = 0 and $h = 200$ to changed equation	
			ning a constant of integration, e.g. c or A	
	$Derta c = 2\sqrt{191} \Derta 2(h-9)^{\frac{1}{2}} = -0.1t$	+ 2√191	dependent on the previous M mark Applies $h = 50$ and their value of c to	
	$\{h=50 \Longrightarrow\}$ $2\sqrt{(50-9)}=-0.1t+2$	$2\sqrt{191}$	their changed equation and rearrange	
	<i>t</i> =		to find the value of $t =$	
	$t = 20\sqrt{191} - 20\sqrt{41}$ or $t = 148.3430145 = 148$ (minut	es) (nearest minute)	$t = 20\sqrt{191} - 20\sqrt{41}$ is or awrt 14	AI CSO
				[6]
(b) Way 2	$\int_{200}^{50} \frac{\mathrm{d}h}{\sqrt{(h-9)}} = \int_{0}^{T} k \mathrm{d}t$	in the wrong posi	bles correctly. dh and dt should not b itions, although this mark can be implied. Integral signs and limits not necessary	e d B1
	$\int_{200}^{50} (h-9)^{-\frac{1}{2}} dh = \int_{0}^{T} k dt$			
	$\begin{bmatrix} (h-0)^{\frac{1}{2}} \end{bmatrix}^{50}$		$\frac{\pm\lambda}{\sqrt{(h-9)}}$ to give $\pm m\sqrt{(h-9)}$; /, m^{-1} (
	$\left[\frac{(h-9)^{\frac{1}{2}}}{\left(\frac{1}{2}\right)^{\frac{1}{2}}}\right]_{200}^{30} = \left[kt\right]_{0}^{T}$	(2)	$\frac{(k-9)^{\frac{1}{2}}}{\left(\frac{1}{2}\right)} = (\text{their } k)t, \text{ with/without limits}$	
			nt, which can be un-simplified or simplified mpts to apply limits of $h = 200, h = 50$	
	$2\sqrt{41} - 2\sqrt{191} = kt$ or kT		implied) $t = 0$ to their changed equation	3.64
	$t = \frac{2\sqrt{41} - 2\sqrt{191}}{-0.1}$		dependent on the previous M mar hen rearranges to find the value of $t =$	k ami
	$t = 20\sqrt{191} - 20\sqrt{41}$ or $t = 148.3430145 = 148$ (minut		$t = 20\sqrt{191} - 20\sqrt{41}$ or awrt 14	⁸ A1 cso
	i = 140.3450145 = 140 (IIIIIIU		or 2 hours and awrt 28 minute	
				[6]
	I			

Summer 2017

Past Paper (Mark Scheme)

www.mystudybro.com This resource was created and owned by Pearson Edexcel

Mathematics C4

		Question 7 Notes		
7. (b)	Note	Allow first B1 for writing $\frac{dt}{dh} = \frac{1}{k\sqrt{(h-9)}}$ or $\frac{dt}{dh} = \frac{1}{(\text{their } k)\sqrt{(h-9)}}$ or equivalent		
	Note	$\frac{\mathrm{d}t}{\mathrm{d}h} = \frac{1}{k\sqrt{(h-9)}} \text{ leading to } t = \frac{2}{k}\sqrt{(h-9)} (+c) \text{ with/without } +c \text{ is B1M1A1}$		
	Note	After finding $k = 0.1$ in part (a), it is only possible to gain full marks in part (b) by initially writing		
		$\frac{\mathrm{d}h}{\mathrm{d}t} = -k\sqrt{(h-9)} \text{ or } \grave{0}\frac{\mathrm{d}h}{\sqrt{(h-9)}} = \grave{0} - k\mathrm{d}t \text{ or } \frac{\mathrm{d}h}{\mathrm{d}t} = -0.1\sqrt{(h-9)} \text{ or } \grave{0}\frac{\mathrm{d}h}{\sqrt{(h-9)}} = \grave{0} - 0.1\mathrm{d}t$		
		Otherwise, those candidates who find $k = 0.1$ in part (a), should lose at least the final A1 mark in		
		part (b).		

6666 Leave blank

DO NOT WRITE IN THIS AREA

4. The rate of decay of the mass of a particular substance is modelled by the differential equation

$$\frac{\mathrm{d}x}{\mathrm{d}t} = -\frac{5}{2}x, \qquad t \ge 0$$

where x is the mass of the substance measured in grams and t is the time measured in days.

Given that x = 60 when t = 0,

(a) solve the differential equation, giving x in terms of t. You should show all steps in your working and give your answer in its simplest form.

(4)

(b) Find the time taken for the mass of the substance to decay from 60 grams to 20 grams. Give your answer to the nearest minute.

(3)

DO NOT WRITE IN THIS ARE

P 4 6 7 1 8 A 0 1 2 3 2

Question Number	Scheme		Notes	Marks
4.	$\frac{\mathrm{d}x}{\mathrm{d}t} = -\frac{5}{2}x, x \in \mathbb{R}, x \ge 0$			
(a) Way 1	$\int \frac{1}{x} dx = \int -\frac{5}{2} dt$ Separates variables as shown. dx and dt should not be in the wrong positions, though this mark can be implied by later working. Ignore the integral signs.		B1	
	$\ln x = -\frac{5}{2}t + c$	Integrat	tes both sides to give either $\pm \frac{\alpha}{x} \to \pm \alpha \ln x$ or $\pm k \to \pm kt$ (with respect to <i>t</i>); $k, \alpha \neq 0$	M1
	2		$\ln x = -\frac{5}{2}t + c, \text{ including "}+c"$	A1
	$\{t=0, x=60 \Longrightarrow\} \ln 60 = c$		Finds their c and uses correct algebra $\frac{-5}{60}$	
	$\ln x = -\frac{5}{2}t + \ln 60 \Rightarrow \underline{x = 60e^{-\frac{5}{2}t}}$ or	$x = \frac{60}{e^{\frac{5}{2}t}}$	to achieve $x = 60e^{-\frac{5}{2}t}$ or $x = \frac{60}{e^{\frac{5}{2}t}}$ with no incorrect working seen	A1 cso
(a) Way 2	$\frac{\mathrm{d}t}{\mathrm{d}x} = -\frac{2}{5x} \text{or} \ t = \int -\frac{2}{5x} \mathrm{d}x$		Either $\frac{dt}{dx} = -\frac{2}{5x}$ or $t = \int -\frac{2}{5x} dx$ Integrates both sides to give	[4] B1
	$t = -\frac{2}{5}\ln x + c$		either $t =$ or $\pm \alpha \ln px; \alpha \neq 0, p > 0$	M1
	5 5 5		$t = -\frac{2}{5}\ln x + c, \text{ including "}+c"$	A1
	$\begin{cases} t = 0, x = 60 \Rightarrow \\ c = \frac{2}{5} \ln 60 \Rightarrow t = -\frac{2}{5} \ln x + \frac{2}{5} \ln 60 \end{cases}$ Finds their <i>c</i> and uses correct algebra to achieve $x = 60e^{-\frac{5}{2}t}$ or $x = \frac{60}{\frac{5}{2}t}$			
	$\Rightarrow -\frac{5}{2}t = \ln x - \ln 60 \Rightarrow \underline{x} = 60e^{-\frac{3}{2}t}$	or $x = \frac{60}{e^{\frac{5}{2}t}}$	with no incorrect working seen	A1 cso
(a)	$\int_{0}^{x} 1_{dx} = \int_{0}^{t} 5_{dt}$		Ignore limits	[4] B1
Way 3	$\int_{60}^{10} \frac{1}{x} dx = \int_{0}^{10} -\frac{5}{2} dt$	Integrat	tes both sides to give either $\pm \frac{\alpha}{x} \rightarrow \pm \alpha \ln x$	M1
	$\left[\ln x\right]_{60}^{x} = \left[-\frac{5}{2}t\right]_{0}^{t}$		or $\pm k \rightarrow \pm kt$ (with respect to <i>t</i>); $k, \alpha \neq 0$ $\left[\ln x\right]_{60}^{x} = \left[-\frac{5}{2}t\right]_{0}^{t}$ including the correct limits	A1
	$\ln x - \ln 60 = -\frac{5}{2}t \implies x = 60e^{-\frac{5}{2}t}$ or		Correct algebra leading to a correct result	A1 cso
		Cul	actitutes	[4]
(b)	Substitutes $x = 20$ into an equation in the form $20 = 60e^{-\frac{5}{2}t}$ or $\ln 20 = -\frac{5}{2}t + \ln 60$ of either $x = \pm \lambda e^{\pm\mu t} \pm \beta$ or $x = \pm \lambda e^{\pm\mu t \pm \alpha \ln \delta x}$ or $\pm \alpha \ln \delta x = \pm \mu t \pm \beta$ or $t = \pm \lambda \ln \delta x \pm \beta$; $\alpha, \lambda, \mu, \delta \neq 0$ and β can be 0		M1	
	$\{= 0.4394449 (days)\}$ Note: <i>t</i> must be greater than 0	either $t = A$ $t = A(\ln 20 - 1)$	dependent on the previous M mark algebra to achieve an equation of the form of $A\ln\left(\frac{60}{20}\right)$ or $A\ln\left(\frac{20}{60}\right)$ or $A\ln 3$ or $A\ln\left(\frac{1}{3}\right)$ o.e. or $-\ln 60$) or $A(\ln 60 - \ln 20)$ o.e. $(A \in \Box, t > 0)$	dM1
	$\Rightarrow t = 632.8006 = 633 (to the nearest minute) awrt 633 or 10 hours and awrt 33 minutes$ Note: dM1 can be implied by $t = awrt 0.44$ from no incorrect working.		A1 cso	
1	Note dM1 can be implied	d hv t - owthere for the formula of the formula o		

Question		Scheme		Notes	Marks
Number					1. Turks
4.	-	$\frac{\mathrm{d}x}{\mathrm{d}t} = -\frac{5}{2}x, x \in \mathbb{R}, x \ge 0$			
(a) Way 4	$\int \frac{2}{5x} dx = -\int dt$ Separates variables a be in the wrong point implied by later work		rates variables as shown. dx and dt should not in the wrong positions, though this mark can be lied by later working. Ignore the integral signs.	B1	
	$\frac{2}{5}\ln(5x) = -t + c$			Integrates both sides to give either $\pm \alpha \ln(px)$ $k \rightarrow \pm kt$ (with respect to t); $k, \alpha \neq 0; p > 0$	M1
			$\frac{2}{5}\ln(5x) = -t + c, \text{ including "} + c"$		A1
	$\frac{2}{5}\ln(5)$	$x = 60 \Rightarrow \frac{2}{5} \ln 300 = c$ $x = -t + \frac{2}{5} \ln 300 \Rightarrow x = 60e^{-\frac{5}{2}}$	or	Finds their <i>c</i> and uses correct algebra to achieve $x = 60e^{-\frac{5}{2}t}$ or $x = \frac{60}{e^{\frac{5}{2}t}}$ with no incorrect working seen	A1 cso
	$x = \frac{60}{e^{\frac{5}{2}}}$	t			
					[4]
(a) Way 5	$\left\{\frac{\mathrm{d}t}{\mathrm{d}x} =\right.$	$-\frac{2}{5x} \Rightarrow $ $t = \int_{60}^{x} -\frac{2}{5x} dx$		Ignore limits	B1
				Integrates both sides to give either $\pm k \rightarrow \pm kt$	
		$t = \left[-\frac{2}{5} \ln x \right]_{co}^{x}$	(W	with respect to t) or $\pm \frac{\alpha}{x} \to \pm \alpha \ln x$; $k, \alpha \neq 0$	M1
	$l = \left\lfloor -\frac{5}{5} \prod_{i=0}^{m_A} \right\rfloor_{60}$		$t = \left[-\frac{2}{5}\ln x\right]_{60}^{x}$ including the correct limits		A1
	$t = -\frac{2}{5}\ln x + \frac{2}{5}\ln 60 \implies -\frac{5}{2}t = \ln x - \ln 60$				
	$\Rightarrow x =$	$60e^{\frac{5}{2}t}$ or $x = \frac{60}{e^{\frac{5}{2}t}}$	Correct algebra leading to a correct result		A1 cso
					[4]
				testion 4 Notes	
4. (a)	B 1	For the correct separation of vari	iables. I	E.g. $\int \frac{1}{5x} dx = \int -\frac{1}{2} dt$	
	Note	B1 can be implied by seeing eith	her $\ln x$	$= -\frac{5}{2}t + c$ or $t = -\frac{2}{5}\ln x + c$ with or without +	- C
	Note	B1 can also be implied by seeing		L 10	
	Note	Allow A1 for $x = 60\sqrt{e^{-5t}}$ or $x = \frac{60}{\sqrt{e^{5t}}}$ with no incorrect working seen			
	Note	Give final A0 for $x = e^{-\frac{5}{2}t} + 60$	$\rightarrow x =$	$60e^{-\frac{5}{2}t}$	
	Note	Give final A0 for writing $x = e^{-\frac{5}{2}t + \ln 60}$ as their final answer (without seeing $x = 60e^{-\frac{5}{2}t}$)			
	Note			ifferent methods that candidates can give.	
				$60e^{-\frac{5}{2}t}$ or $x = \frac{60}{-\frac{5}{2}t}$ with no evidence of working or	r integration
	Note		,,, ii _λ =	$e^{\frac{1}{2}t}$	mogration
(b)	A1	seen. You can apply cso for the work of	only see	n in part (b).	
(~)	Note			lowed by $t = awrt 633$ from no incorrect working	g.
		Substitutes $x = 40$ into their equ			

(3)

6666 Leave

blank

7. (a) Express $\frac{2}{P(P-2)}$ in partial fractions.

A team of biologists is studying a population of a particular species of animal.

The population is modelled by the differential equation

$$\frac{\mathrm{d}P}{\mathrm{d}t} = \frac{1}{2}P(P-2)\cos 2t, \ t \ge 0$$

where P is the population in thousands, and t is the time measured in years since the start of the study.

Given that P = 3 when t = 0,

(b) solve this differential equation to show that

$$P = \frac{6}{3 - \mathrm{e}^{\frac{1}{2}\mathrm{sin}\,2t}}$$

(7)

(c) find the time taken for the population to reach 4000 for the first time. Give your answer in years to 3 significant figures.

(3)

MSB - Page 13

Question Number	Scheme	Marks
7. (a)	$\frac{2}{P(P-2)} = \frac{A}{P} + \frac{B}{(P-2)}$	
	$2 \equiv A(P-2) + BP$ Can be implied	l. M1
	A = -1, B = 1 Either on	e. A1
	giving $\frac{1}{(P-2)} - \frac{1}{P}$ See notes. cao, as	f A1
(b)	$\frac{\mathrm{d}P}{\mathrm{d}t} = \frac{1}{2}P(P-2)\cos 2t$	[3]
	$\int \frac{2}{P(P-2)} dP = \int \cos 2t dt \qquad \text{can be implied by later workin}$	g B1 oe
	$\pm \lambda \ln(P-2) \pm \mu \ln P$ $\ln(P-2) - \ln P = \frac{1}{2} \sin 2t \ (+c)$	M1
	$\ln (P-2) - \ln P = \frac{1}{2} \sin 2$	t A1
	$\{t = 0, P = 3 \Rightarrow\} \ln 1 - \ln 3 = 0 + c \{\Rightarrow c = -\ln 3 \text{ or } \ln(\frac{1}{3})\}$ See note	s M1
	$\ln (P-2) - \ln P = \frac{1}{2} \sin 2t - \ln 3$ $\ln \left(\frac{3(P-2)}{P}\right) = \frac{1}{2} \sin 2t$	
	Starting from an equation of the form $ \frac{3(P-2)}{P} = e^{\frac{1}{2}\sin 2t} $ $ \frac{3(P-2)}{P} = e^{\frac{1}{2}\sin 2t} $ $ \lambda, \mu, \beta, K, \delta \neq 0, applies a fully correct method to eliminate their logarithm Must have a constant of integration that need not be evaluated (see noted to be evaluated to$	^o M1 3. d
	$3(P-2) = Pe^{\frac{1}{2}\sin 2t} \Rightarrow 3P-6 = Pe^{\frac{1}{2}\sin 2t}$ Gives $3P - Pe^{\frac{1}{2}\sin 2t} = 6 \Rightarrow P(3 - e^{\frac{1}{2}\sin 2t}) = 6$ $Must have a constant of integration that need not be evaluated (see not$	$\mathbf{n}^{t.}$ dM1
	$P = \frac{6}{(3 - e^{\frac{1}{2}\sin 2t})} *$ Correct proo	
(c)	{population = 4000 \Rightarrow } $P = 4$ States $P = 4$ or applies $P = 4$	[7] [7]
. /	$\frac{1}{2}\sin 2t = \ln\left(\frac{3(4-2)}{4}\right) \left\{ = \ln\left(\frac{3}{2}\right) \right\}$ Obtains $\pm \lambda \sin 2t = \ln k$ or $\pm \lambda \sin t = \ln k$ $\lambda \neq 0, k > 0$ where λ and k are numerical values and λ can be	1 M1
	t = 0.4728700467 anything that rounds to 0.47 Do not apply isw here	IAI
		[3] 13

Question Number		Scheme		Marks
	Method	<u>2 for Q7(b)</u>		
7. (b)	ln (F	$P-2) - \ln P = \frac{1}{2}\sin 2t \ (+c)$	As before for	B1M1A1
	lr	$n\left(\frac{(P-2)}{P}\right) = \frac{1}{2}\sin 2t + c$		
	$\frac{(P-1)}{P}$	$\frac{2}{2} = e^{\frac{1}{2}\sin 2t + c}$ or $\frac{(P-2)}{P} = Ae^{\frac{1}{2}\sin 2t}$	Starting from an equation of the form $\pm \lambda \ln(P - \beta) \pm \mu \ln P = \pm K \sin \delta t + c$, $\lambda, \mu, \beta, K, \delta \neq 0$, applies a fully correct method to eliminate their logarithms. Must have a constant of integration that need not be evaluated (see note)	3 rd M1
		$= APe^{\frac{1}{2}\sin 2t} \Rightarrow P - APe^{\frac{1}{2}\sin 2t} = 2$ $- Ae^{\frac{1}{2}\sin 2t} = 2 \Rightarrow P = \frac{2}{(1 - Ae^{\frac{1}{2}\sin 2t})}$	A complete method of rearranging to make P the subject. Condone sign slips or constant errors. Must have a constant of integration that need not be evaluated (see note)	4 th dM1
	${t=0, I}$	$P = 3 \Longrightarrow \} 3 = \frac{2}{(1 - Ae^{\frac{1}{2}\sin 2(0)})}$	See notes (Allocate this mark as the 2 nd M1 mark on ePEN).	2 nd M1
	$\left\{ \Rightarrow 3 = \right.$	$=\frac{2}{(1-A)} \Rightarrow A = \frac{1}{3}$		
	$\Rightarrow P =$	$\frac{2}{\left(1-\frac{1}{3}e^{\frac{1}{2}\sin 2t}\right)} \Rightarrow P = \frac{6}{\left(3-e^{\frac{1}{2}\sin 2t}\right)}^*$	Correct proof.	A1 * cso
		Questio	on 7 Notes	
7. (a)	M1	Forming a correct identity. For example,	$2 \equiv A(P-2) + BP \text{ from } \frac{2}{P(P-2)} = \frac{A}{P} + \frac{A}{P}$	$\frac{B}{(P-2)}$
	Note A1	A and B are not referred to in question. Either one of $A = -1$ or $B = 1$.		
	A1	$\frac{1}{(P-2)} - \frac{1}{P}$ or any equivalent form. The	is answer <i>cannot</i> be recovered from part (b).
	Note	M1A1A1 can also be given for a candidate	e who finds both $A = -1$ and $B = 1$ and $\frac{A}{P}$	$+ \frac{B}{(P-2)}$
		is seen in their working.		. ,
	Note	Candidates can use 'cover-up' rule to writ	e down $\frac{1}{(P-2)} - \frac{1}{P}$, so as to gain all thre	e marks.
	Note		- BP gives $A + B = 2, -2A = 2 \Longrightarrow A = -1,$	

7. (b)	B1	Separates variables as shown on the Mark Scheme. dP and dt should be in the correct positions, though this mark can be implied by later working. Ignore the integral signs.	
	Note Eg: $\int \frac{2}{P^2 - 2P} dP = \int \cos 2t dt$ or $\int \frac{1}{P(P-2)} dP = \frac{1}{2} \int \cos 2t dt$ o.e. are als		
	1 st M1	$\pm \lambda \ln(P-2) \pm \mu \ln P$, $\lambda \neq 0$, $\mu \neq 0$. Also allow $\pm \lambda \ln(M(P-2)) \pm \mu \ln NP$; M, N can be 1.	
	Note	Condone $2\ln(P-2) + 2\ln P$ or $2\ln(P(P-2))$ or $2\ln(P^2-2P)$ or $\ln(P^2-2P)$	
	1 st A1 Correct result of $\ln(P-2) - \ln P = \frac{1}{2}\sin 2t$ or $2\ln(P-2) - 2\ln P = \sin 2t$		
	2 nd M1	o.e. with or without $+c$ Some synchronized provide the second \mathbf{R} is an integrated equation containing a constant of	
	2 NII	Some evidence of using both $t = 0$ and $P = 3$ in an integrated equation containing a constant of integration. Eg: <i>c</i> or <i>A</i> , etc.	
	3 rd M1	Starting from an equation of the form $\pm \lambda \ln(P - \beta) \pm \mu \ln P = \pm K \sin \delta t + c, \ \lambda, \mu, \beta, K, \delta \neq 0,$	
	4 th M1	applies a fully correct method to eliminate their logarithms. dependent on the third method mark being awarded.	
		A complete method of rearranging to make P the subject. Condone sign slips or constant errors.	
	Note	For the 3^{rd} M1 and 4^{th} M1 marks, a candidate needs to have included a constant of integration, in their working. eg. <i>c</i> , <i>A</i> , ln <i>A</i> or an evaluated constant of integration.	
	2 nd A1	Correct proof of $P = \frac{6}{(3 - e^{\frac{1}{2}\sin 2t})}$. Note: This answer is given in the question.	
	Note	$\ln\left(\frac{(P-2)}{P}\right) = \frac{1}{2}\sin 2t + c \text{ followed by } \frac{(P-2)}{P} = e^{\frac{1}{2}\sin 2t} + e^{c} \text{ is } 3^{\text{rd}} \text{ M0, } 4^{\text{th}} \text{ M0, } 2^{\text{rd}} \text{ A0.}$	
	Note	$\ln\left(\frac{(P-2)}{P}\right) = \frac{1}{2}\sin 2t + c \rightarrow \frac{(P-2)}{P} = e^{\frac{1}{2}\sin 2t + c} \rightarrow \frac{(P-2)}{P} = e^{\frac{1}{2}\sin 2t} + e^{c} \text{ is final M1M0A0}$	
4 th M1 for making <i>P</i> the subject		for making <i>P</i> the subject	
	Note there are three type of manipulations here which are considered acceptable for map <i>P</i> the subject. (1) M1 for $\frac{3(P-2)}{P} = e^{\frac{1}{2}\sin 2t} \Rightarrow 3(P-2) = Pe^{\frac{1}{2}\sin 2t} \Rightarrow 3P-6 = Pe^{\frac{1}{2}\sin 2t} \Rightarrow P(3 - e^{\frac{1}{2}\sin 2t})$		
		$\Rightarrow P = \frac{6}{(3 - e^{\frac{1}{2}\sin 2t})}$	
	(2) M1	for $\frac{3(P-2)}{P} = e^{\frac{1}{2}\sin 2t} \Rightarrow 3 - \frac{6}{P} = e^{\frac{1}{2}\sin 2t} \Rightarrow 3 - e^{\frac{1}{2}\sin 2t} = \frac{6}{P} \Rightarrow \Rightarrow P = \frac{6}{(3 - e^{\frac{1}{2}\sin 2t})}$	
	(3) M1	for $\left\{ \ln(P-2) + \ln P = \frac{1}{2}\sin 2t + \ln 3 \Rightarrow \right\} P(P-2) = 3e^{\frac{1}{2}\sin 2t} \Rightarrow P^2 - 2P = 3e^{\frac{1}{2}\sin 2t}$	
		$\Rightarrow (P-1)^2 - 1 = 3e^{\frac{1}{2}\sin 2t} \text{ leading to } P =$	
(c)	M1	States $P = 4$ or applies $P = 4$	
	M1	Obtains $\pm \lambda \sin 2t = \ln k$ or $\pm \lambda \sin t = \ln k$, where λ and k are numerical values and λ can be 1	
	A1	anything that rounds to 0.473. (Do not apply isw here)	
	Note	Do not apply ignore subsequent working for A1. (Eg: 0.473 followed by 473 years is A0.)	
	Note	<u>Use of $P = 4000$</u> : Without the mention of $P = 4$, $\frac{1}{2}\sin 2t = \ln 2.9985$ or $\sin 2t = 2\ln 2.9985$	
		or $\sin 2t = 2.1912$ will usually imply M0M1A0	
	Note	<u>Use of Degrees:</u> $t = awrt 27.1$ will usually imply M1M1A0	