MyStudyBro - Revision Exercise Tool

This Revision Handout includes the Questions and Answers of a total of 5 exercises!

Chapters:

Integration - C4 (Pearson Edexcel)

•	
Page 1	(6666) 2018 Summer Partial Fractions
Page 2	(6666) 2018 Summer - Answer Also Includes: Partial Fractions
Page 5	(6666) 2018 Summer
Page 6	(6666) 2018 Summer - Answer
Page 9	(6666) 2017 Summer
Page 10	(6666) 2017 Summer - Answer
Page 14	(6666) 2017 Summer
Page 15	(6666) 2017 Summer - Answer
Page 17	(6666) 2017 Summer Coordinate Geometry and Parametric Differentiation
Page 18	(6666) 2017 Summer - Answer Also Includes: Coordinate Geometry and Parametric Differentiation

6666 Leave

blank

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

3. (i) Given that

$$\frac{13-4x}{(2x+1)^2(x+3)} \equiv \frac{A}{(2x+1)} + \frac{B}{(2x+1)^2} + \frac{C}{(x+3)}$$

- (a) find the values of the constants *A*, *B* and *C*.
- (b) Hence find

$$\int \frac{13 - 4x}{(2x+1)^2(x+3)} \, \mathrm{d}x, \quad x > -\frac{1}{2}$$
(3)

(ii) Find

$$\int (e^x + 1)^3 \, \mathrm{d}x$$

12	1
(J)

(4)

(iii) Using the substitution $u^3 = x$, or otherwise, find

$$\int \frac{1}{4x+5x^{\frac{1}{3}}} \,\mathrm{d}x, \quad x > 0$$

(4)

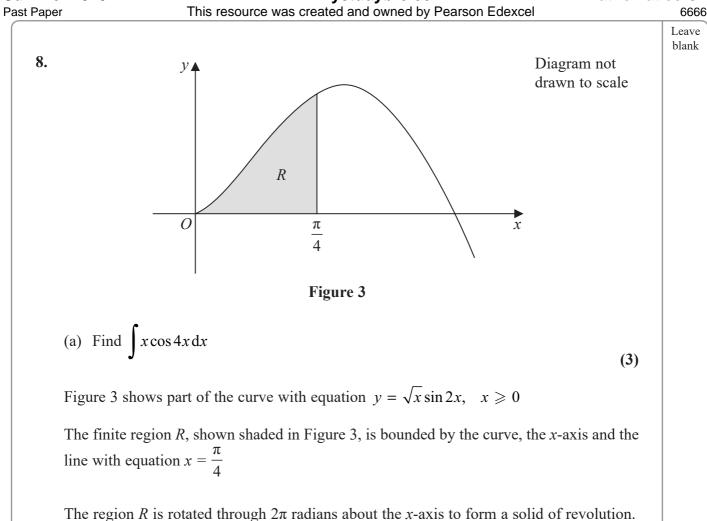
Mathematics C4 6666

Past Paper (Mark Scheme)

www.mystudybro.com This resource was created and owned by Pearson Edexcel

Question Number	Scheme			Notes	Marks
3. (i)	$\frac{13-4x}{(2x+1)^2(x+3)} \equiv \frac{A}{(2x+1)} + \frac{B}{(2x+1)^2} + \frac{C}{(x+3)}$				
	B = 6, C = 1			At least one of $B = 6$ or $C = 1$	B1
(a)	B = 0, C = 1			Both $B = 6$ and $C = 1$	B1
	$13-4x \equiv A(2x+1)(x+3) + B(x+3) + C(2x+1)^2$ $x = -3 \Rightarrow 25 = 25C \Rightarrow C = 1$ $x = -\frac{1}{2} \Rightarrow 13 - 2 = \frac{5}{2}B \Rightarrow 15 = 2.5B \Rightarrow B = 6$ Writes down a correct identity and attempts to find the value of either one of A or B or C			M1	
	Either $x^2: 0 = 2A + 4C$, constant: $13 = 3A + 4C$				
	$x: -4 = 7A + B + 4C$ or $x=0 \Longrightarrow 13 = 3A$ leading to $A = -2$	A + 3B +	- C	Using a correct identity to find $A = -2$	A1
			·		[4]
(b)	$\int \frac{13-4x}{(2x+1)^2(x+3)} \mathrm{d}x = \int \frac{-2}{(2x+1)} + \frac{6}{(2x+1)^2}$	$+\frac{1}{(x+3)}$	$\frac{1}{3}$ dx		
	$=\frac{(-2)}{2}\ln(2x+1)+\frac{6(2x+1)^{-1}}{(-1)(2)}+\ln(x+3) \{+\alpha$	al		See notes	M1
	$\frac{1}{2} = \frac{1}{2} + \frac{1}$	~ J		least two terms correctly integrated	A1ft
	o.e. $\left\{=-\ln(2x+1)-3(2x+1)^{-1}+\ln(x+3)\{+c\}\right\}$			rect answer, o.e. Simplified or un- lified. The correct answer must be stated on one line Ignore the absence of $+c'$	A1
					[3]
(ii)	$\left\{ \left(e^{x} + 1 \right)^{3} = \right\} e^{3x} + 3e^{2x} + 3e^{x} + 1$	$e^{3x} +$	$3e^{2x} +$	$3e^x + 1$, simplified or un-simplified	B1
				At least 3 examples (see notes) of correct ft integration	M1
	$\left\{ \int (e^{x} + 1)^{3} dx \right\} = \frac{1}{3}e^{3x} + \frac{3}{2}e^{2x} + 3e^{x} + x \left\{ + c \right\}$		mplifie	$\frac{1}{3}e^{3x} + \frac{3}{2}e^{2x} + 3e^{x} + x,$ ed or un-simplified with or without +c	A1
					[3]
(iii)	$\int \frac{1}{4x+5x^{\frac{1}{3}}} \mathrm{d}x, \ x > 0; \ u^3 = x$				
	$3u^2\frac{\mathrm{d}u}{\mathrm{d}x}=1$		$3u^2 \frac{d}{d}$	$\frac{du}{dx} = 1 \text{ or } \frac{dx}{du} = 3u^2 \text{ or } \frac{du}{dx} = \frac{1}{3}x^{-\frac{2}{3}}$ or $3u^2du = dx$ o.e.	B1
	$= \int \frac{1}{4u^3 + 5u} . 3u^2 \mathrm{d}u \left\{ = \int \frac{3u}{4u^2 + 5} \mathrm{d}u \right\}$	Doe		ession of the form $\int \frac{\pm ku^2}{4u^3 \pm 5u} \{ du \},\$ k \ne 0 have to include integral sign or du Can be implied by later working	M1
	$=\frac{3}{8}\ln(4u^2+5)\{+c\}$			pendent on the previous M mark $\lambda \ln(4u^2 + 5); \lambda$ is a constant; $\lambda \neq 0$	dM1
	$=\frac{3}{8}\ln\left(4x^{\frac{2}{3}}+5\right)\{+c\}$		Corre	ect answer in x with or without $+ c$	A1
					[4]
		<u> </u>			14

a /····	A 1 4		estion 3 Notes				
3. (iii)	<u>Alterna</u>	tive method 1 for part (iii)	Attempts to multiply pymenter and	1			
Alt 1			Attempts to multiply numerator and $-\frac{1}{2}$	M1			
		$-\frac{1}{2}$	denominator by $x^{-\frac{1}{3}}$				
	{	$\frac{1}{5x^{\frac{1}{3}}} dx = \int \frac{x^{-\frac{1}{3}}}{4x^{\frac{2}{3}} + 5} dx$	Expression of the form $\int \frac{\pm kx^{-\frac{1}{3}}}{4x^{\frac{2}{3}}+5} dx, k \neq 0$				
	$(\mathbf{J} 4x +$	$-5x^3$) $\int 4x^3 + 5$	• = •	M1			
			Does not have to include integral sign or du				
	(2	Can be implied by later working				
	$=\frac{3}{-}\ln \left[$	$4x^{\frac{2}{3}}+5$ $+ c$ }	$\pm \lambda \ln(4x^{\frac{2}{3}}+5); \ \lambda \text{ is a constant}; \ \lambda \neq 0$	dM1			
	8 (Correct answer in x with or without + c	A1			
	244			[4			
3. (i) (a)	M1		gh this can be implied) and attempts <i>to find the</i>				
		identity <i>or</i> comparing coefficients.	can be achieved by <i>either</i> substituting values in	no men			
	Note	The correct partial fraction from no wo	rking scores B1B1M1A1				
		<u> </u>		E (0 1)-1			
(i) (b)	M1	At least 2 of either $\pm \frac{1}{(2x+1)} \rightarrow \pm D \ln \frac{1}{(2x+1)}$	$n(2x+1)$ or $\pm D\ln(x+\frac{1}{2})$ or $\pm \frac{Q}{(2x+1)^2} \rightarrow \pm R$	$2(2x+1)^{-1}$			
		or					
		R Γ					
	$\pm \frac{R}{(x+3)} \rightarrow \pm F \ln(x+3)$ for their constants P, Q, R.						
		(* + 5)					
	A1ft	At least two terms from any of $\pm \frac{P}{(2x+1)}$ or $\pm \frac{Q}{(2x+1)^2}$ or $\pm \frac{R}{(x+3)}$ correctly integrated.					
	Note	Can be un-simplified for the A1ft mark. $(2x + 1)$ $(x + 3)$					
	A1 Correct answer of $\frac{(-2)}{2}\ln(2x+1) + \frac{6(2x+1)^{-1}}{(-1)(2)} + \ln(x+3) \{+c\}$ simplified or un-simplified						
	with or without '+ c '.						
		$a = \ln\left(\frac{x+3}{2}\right) = 3$ (1.5) or					
		Allow final A1 for equivalent answers,	e.g. $\ln\left(\frac{1}{2x+1}\right)^{-1} \frac{1}{2x+1} \{+c\}$ or				
	Note	1 (2x+6) 3 (1-)					
		$\ln\left(\frac{2x+6}{2x+1}\right) - \frac{3}{2x+1} \{+c\}$					
	Note Beware that $\int \frac{-2}{(2x+1)} dx = \int \frac{-1}{(x+\frac{1}{2})} dx = -\ln(x+\frac{1}{2}) \{+c\}$ is correct integration						
	Note	E.g. Allow M1 A1ft A1 for a correct un-simplified $\ln(x+3) - \ln(x+\frac{1}{2}) - \frac{3}{2}(x+\frac{1}{2})^{-1} \{+c\}$					
	Note	E.g. Allow M1 A1ft A1 for a correct un-simplified $\ln(x+3) - \ln(x+\frac{1}{2}) - \frac{3}{2}(x+\frac{1}{2})^{-1} \{+c\}$ Condone 1 st A1ft for poor bracketing, but do not allow poor bracketing for the final A1					
	THOLE		$x+1$) ⁻¹ + ln x+3 {+ c} unless recovered	L			
(ii)	Note	Give B1 for an un-simplified $e^{3x} + 2e^{2x}$					
(11)	Note						
	M1	At least 3 of either $ae^{3x} \rightarrow \frac{a}{2}e^{3x}$ or be	$e^{2x} \rightarrow \frac{b}{2}e^{2x}$ or $de^x \rightarrow de^x$ or $\mu \rightarrow \mu x; \alpha, \beta, \delta$	$\delta, \mu \neq 0$			
		3	1 2				
	Note	Give A1 for an un-simplified $\frac{1}{3}e^{3x} + e^2$	$x^{x} + \frac{1}{2}e^{2x} + 2e^{x} + e^{x} + x$, with or without $+c$				
		$\int +kn$	2				
(iii)	Note	1 st M1 can be implied by $\int \frac{\pm \kappa u}{4u^2 + 5} \{ du \}$	}, $k \neq 0$. Does not have to include integral sign	or du			
	Note	Condone 1 st M1 for expressions of the	form $\left \left(\frac{\pm 1}{4u^3 + 5u}, \frac{\pm \kappa}{u^{-2}} \right) \right \{ du \}, k \neq 0$				
			• · · · ·				
	Note	Give 2^{nd} M0 for $\frac{3u}{2} \ln(4u^2 + 5) \{+c\}$ (u	<i>u</i> 's not cancelled) unless recovered in later work	king			
	NT 4	g to $\frac{3}{4}u\ln(4u^2+5)$ as this is not in the form					
	Note		4				
		$\pm\lambda\ln(4u^2+5)$					


Note	Condone 2 nd M1 for poor bracketing, but do not allow poor bracketing for the final A1
	E.g. Give final A0 for $\frac{3}{8} \ln 4x^{\frac{2}{3}} + 5 \{+c\}$ unless recovered

Question Number	Scheme		Notes	Marks
3. (ii) Alt 1	$\int (e^x + 1)^3 dx; u = e^x + 1 \implies \frac{du}{dx} = e^x$			
	$\left\{=\int \frac{u^{3}}{(u-1)} du =\right\} \int \left(u^{2} + u + 1 + \frac{1}{u-1}\right) du = \left(u^{2} + u + 1\right) du = \left$	$\left(\frac{1}{1}\right) du$	$\int \left(u^2 + u + 1 + \frac{1}{u - 1} \right) \{ du \} \text{ where } u = e^x + 1$	B1
	$=\frac{1}{3}u^{3}+\frac{1}{2}u^{2}+u+\ln(u-1)\{+c\}$	or	At least 3 of either $\alpha u^2 \rightarrow \frac{\alpha}{3} u^3$ or $\beta u \rightarrow \frac{\beta}{2} u^2$ $\delta \rightarrow \delta u$ or $\frac{\lambda}{u-1} \rightarrow \lambda \ln(u-1); \alpha, \beta, \delta, \lambda \neq 0$	M1
	$=\frac{1}{3}(e^{x}+1)^{3}+\frac{1}{2}(e^{x}+1)^{2}+(e^{x}+1)+\ln e^{x}$			
	$=\frac{1}{3}(e^{x}+1)^{3}+\frac{1}{2}(e^{x}+1)^{2}+(e^{x}+1)+x$	{+ <i>c</i> }	$\frac{1}{3}(e^{x}+1)^{3} + \frac{1}{2}(e^{x}+1)^{2} + (e^{x}+1) + x$ or $\frac{1}{3}(e^{x}+1)^{3} + \frac{1}{2}(e^{x}+1)^{2} + e^{x} + x$ simplified or un-simplified with or without + c Note: $\ln(e^{x}+1-1)$ needs to	A1
			be simplified to x for this mark	[3]
3. (ii) Alt 2	$\int (e^x + 1)^3 dx; u = e^x \implies \frac{du}{dx} = e^x$			[0]
	$\left\{=\int \frac{(u+1)^3}{u} \mathrm{d}u =\right\} \int \left(u^2 + 3u + 3 + \frac{1}{u}\right) \mathrm{d}u$	$\left(\frac{1}{u}\right) du$	$\int \left(u^2 + 3u + 3 + \frac{1}{u} \right) \{ du \} \text{ where } u = e^x$	B1
	$=\frac{1}{3}u^{3}+\frac{3}{2}u^{2}+3u+\ln u \{+c\}$		At least 3 of either $\alpha u^2 \rightarrow \frac{\alpha}{3}u^3$ or $\beta u \rightarrow \frac{\beta}{2}u^2$ or $\delta \rightarrow \delta u$ or $\frac{\lambda}{u} \rightarrow \lambda \ln u; \alpha, \beta, \delta, \lambda \neq 0$	M1
	$=\frac{1}{3}e^{3x} + \frac{3}{2}e^{2x} + 3e^{x} + x\{+c\}$	Note:	$\frac{1}{3}e^{3x} + \frac{3}{2}e^{2x} + 3e^{x} + x,$ simplified or un-simplified with or without + c ln(e ^x) needs to be simplified to x for this mark	A1
				[3]

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS ARE

(b) Find the exact value of the volume of this solid of revolution, giving your answer in its simplest form. (Solutions based entirely on graphical or numerical methods are not acceptable.)

(6)

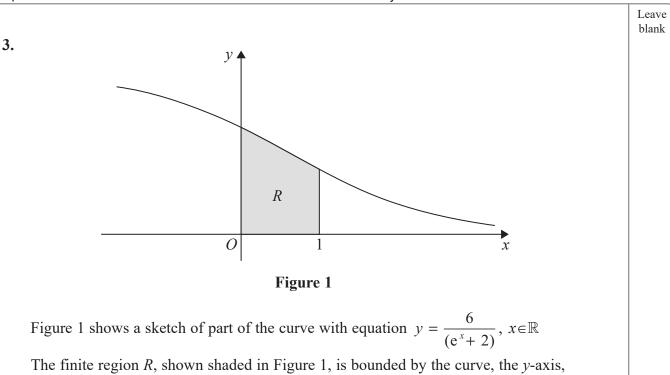
Question Number	Scheme	Notes	Marks
8. (a)	$\left\{ \int x \cos 4x dx \right\}$ $= \frac{1}{4} x \sin 4x - \int \frac{1}{4} \sin 4x \{dx\}$	$\pm \alpha x \sin 4x \pm \beta \int \sin 4x \{ dx \}, \text{ with or without} dx; \alpha, \beta \neq 0$	M1
	4 J 4 J 4	$\frac{1}{4}x\sin 4x - \int \frac{1}{4}\sin 4x \{dx\}, \text{ with or without } dx$ Can be simplified or un-simplified	A1
	$=\frac{1}{4}x\sin 4x + \frac{1}{16}\cos 4x \{+c\}$	$\frac{1}{4}x\sin 4x + \frac{1}{16}\cos 4x \text{ o.e. with or without } +c$ Can be simplified or un-simplified	A1
	Note: You can ignore su	ubsequent working following on from a correct solution	[3]
(b) Way 1	$\{V =\} \pi \int_{0}^{\frac{\pi}{4}} (\sqrt{x} \sin 2x)^2 \{dx\}$	$\pi \int (\sqrt{x} \sin 2x)^2 \{ dx \}$ Ignore limits and dx. Can be implied	B1
		For writing down a correct equation linking	
	$\left\{\int x\sin^2 2x\mathrm{d}x=\right\}$	$\sin^2 2x$ and $\cos 4x$ (e.g. $\cos 4x = 1 - 2\sin^2 2x$)	
	$\int x \left(\frac{1 - \cos 4x}{2} \right) \{ dx \}$	and some attempt at applying this equation (or a manipulation of this equation which can be incorrect) to their integral Can be implied.	M1
		Simplifies $\int x \sin^2 2x \{ dx \}$ to $\int x \left(\frac{1 - \cos 4x}{2} \right) \{ dx \}$	A1
	$\left\{ \int \left(\frac{1}{2}x - \frac{1}{2}x\cos 4x\right) dx \right\}$ = $\frac{1}{4}x^2 - \frac{1}{2} \left(\frac{1}{4}x\sin 4x + \frac{1}{16}\cos 4x\right) dx$	Integrates to give $\pm Ax^2 \pm Bx \sin 4x \pm C \cos 4x; A, B, C \neq 0$ which can be simplified or un-simplified.	M1
	$\left\{ \int_{0}^{\frac{\pi}{4}} \left(\sqrt{x} \sin 2x \right)^{2} dx = \left[\frac{1}{4} x^{2} - \frac{1}{8} \right] \right\}$	$x\sin 4x - \frac{1}{32}\cos 4x \Big]_{0}^{\frac{\pi}{4}} \bigg\}$	
		$-\frac{1}{32}\cos\left(4\left(\frac{\pi}{4}\right)\right)\right) - \left(0 - 0 - \frac{1}{32}\cos 0\right)$ dependent on the previous M mark see notes	dM1
	$= \left(\frac{\pi^2}{64} + \frac{1}{32}\right) - \left(-\frac{1}{32}\right) = \frac{\pi^2}{64} + \frac{1}{32}$	<u>1</u> 16	
	So, $V = \pi \left(\frac{\pi^2}{64} + \frac{1}{16} \right)$ or $\frac{1}{64} \pi^3$	$+\frac{1}{16}\pi$ or $\frac{\pi}{2}\left(\frac{\pi^2}{32}+\frac{1}{8}\right)$ o.e. two term exact answer	A1 o.e.
			[6]
		Question 8 Notes	9
	SC Special Case for the 2	2 nd M and 3 rd M mark for those who use their answer from p	art (a)
	You can apply the 2 nd	M and 3 rd M marks for integration of the form	<u>.</u>
	$\pm Ax^2 \pm$ (their answer		
	where their answer to p		
		$\cos px$ to give $\pm Ax^2 \pm Bx \sin kx \pm C \cos px$	
		$\sin px \text{ to give } \pm Ax^2 \pm Bx \sin kx \pm C \sin px$	
		Usin px to give $\pm Ax^2 \pm Bx \cos kx \pm C \sin px$	
	• $\pm Bx \cos kx \pm C$ $k, p \neq 0, k, p$ can be 1	$C\cos px \text{ to give } \pm Ax^2 \pm Bx\cos kx \pm C\cos px$	
	<i>x</i> , <i>p</i> , <i>v</i> , <i>v</i> , <i>p</i> cun be 1		

www.mystudybro.com This resource was created and owned by Pearson Edexcel

		,		·		
Question Number		Scheme		N	otes	Marks
8. (b) Way 2	$\{V=\}\pi$	$\int_0^{\frac{\pi}{4}} \left(\sqrt{x}\sin 2x\right)^2 \{dx\}$		Ignore limits a	$\pi \int \left(\sqrt{x}\sin 2x\right)^2 \{dx\}$ nd dx. Can be implied	B1
	U	$\int x \left(\frac{1 - \cos 4x}{2}\right) \{dx\}$	an	For writing down a c $\sin^2 2x$ and $\cos 4x$ (e.g d some attempt at apply f this equation which ca	ying this equation (or a	M1
				if if is $\int x \sin^2 2x \{dx\}$ to Note: This mark can $= \frac{1 - \cos 4x}{2}$ or $u = \frac{1}{2}$	$\int x \left(\frac{1 - \cos 4x}{2}\right) \{dx\}$ in be implied for stating	A1
	$=x\left(\frac{1}{2}x\right)$	$\left(x-\frac{1}{8}\sin 4x\right) - \int \left(\frac{1}{2}x-\frac{1}{8}\sin 4x\right)$	$\frac{1}{3}\sin 4x dx$			
	$=x\left(\frac{1}{2}x\right)$	$\left(\frac{1}{4}x^{2}+\frac{1}{32}\right)$	$\left(\cos 4x\right)\{+c\}$		Integrates to give $C\cos 4x; A, B, C \neq 0$ a that can be simplified to this form	M1 (B1 on ePEN)
	$\left\{\int_{0}^{\frac{\pi}{4}} \left(\sqrt{x}\sin 2x\right)^{2} dx = \left[\frac{1}{4}x^{2} - \frac{1}{8}x\sin 4x - \frac{1}{32}\cos 4x\right]_{0}^{\frac{\pi}{4}}\right\}$					
	$= \left(\frac{1}{4}\left(\frac{\pi}{4}\right)^2 - \frac{1}{8}\left(\frac{\pi}{4}\right)\sin\left(4\left(\frac{\pi}{4}\right)\right) - \frac{1}{32}\cos\left(4\left(\frac{\pi}{4}\right)\right)\right) - \left(0 - 0 - \frac{1}{32}\cos 0\right) $ dependent on the previous M mark see notes					dM1
	$= \left(\frac{\pi^2}{64} + \frac{1}{32}\right) - \left(-\frac{1}{32}\right) = \frac{\pi^2}{64} + \frac{1}{16}$					
	So, $V = \pi \left(\frac{\pi^2}{64} + \frac{1}{16}\right)$ or $\frac{1}{64}\pi^3 + \frac{1}{16}\pi$ or $\frac{\pi}{2} \left(\frac{\pi^2}{32} + \frac{1}{8}\right)$ o.e.					A1 o.e.
						[6]
8. (a)	SC	Give Special Case M1		Notes Continued	parts" formula and using	
		$u = x, \frac{\mathrm{d}v}{\mathrm{d}x} = \cos 4x, \text{ bu}$	t making only one	e error in the application	n of the correct formula	
(b)	Note		•		$\sqrt{x}\sin 2x$ or $y^2 = x\sin^2$	
	Note	Note If the form $\cos 4x = \cos^2 2x - \sin^2 2x$ or $\cos 4x = 2\cos^2 2x - 1$ is used, the 1 st M cannot be gained until $\cos^2 2x$ has been replaced by $\cos^2 2x = 1 - \sin^2 2x$ and the result is applied to their in				
	Note					
		Condone $\cos 4\theta = 1 - 2$	$2\sin^2 2\theta$, $\sin^2 2\theta$	$=\frac{1-\cos 4\theta}{2} \text{ or } \lambda \sin^2 2\theta$	$\theta = \lambda \left(\frac{1 - \cos 4\theta}{2} \right)$	
	Final M1	Complete method of applying limits of $-$ and U to all terms of an expression of the to				rm
		$\pm Ax^2 \pm Bx\sin 4x \pm Cc$	$os4x; A, B, C \neq 0$) and subtracting the co	rrect way round.	
	Note		in Way 1, allow	one transcription error (on $\sin 4x$ or $\cos 4x$) in	the
				1		

www.mystudybro.com This resource was created and owned by Pearson Edexcel

		Question 8 Notes Continued
8. (b)	Note	Evidence of a proper consideration of the limit of 0 on $\cos 4x$ where applicable is needed for
		the final M mark
		E.g. $\left[\frac{1}{4}x^2 - \frac{1}{8}x\sin 4x - \frac{1}{32}\cos 4x\right]_0^{\frac{\pi}{4}} =$
		• = $\left(\frac{1}{4}\left(\frac{\pi}{4}\right)^2 - \frac{1}{8}\left(\frac{\pi}{4}\right)\sin\left(4\left(\frac{\pi}{4}\right)\right) - \frac{1}{32}\cos\left(4\left(\frac{\pi}{4}\right)\right)\right) + \frac{1}{32}$ is final M1
		• $\left(\frac{1}{4}\left(\frac{\pi}{4}\right)^2 - \frac{1}{8}\left(\frac{\pi}{4}\right)\sin\left(4\left(\frac{\pi}{4}\right)\right) - \frac{1}{32}\cos\left(4\left(\frac{\pi}{4}\right)\right)\right) - 0$ is final M0
		• $\left(\frac{1}{4}\left(\frac{\pi}{4}\right)^2 - \frac{1}{8}\left(\frac{\pi}{4}\right)\sin\left(4\left(\frac{\pi}{4}\right)\right) - \frac{1}{32}\cos\left(4\left(\frac{\pi}{4}\right)\right)\right) - \frac{1}{32}$ is final M0 (adding)
		• $\left(\frac{1}{4}\left(\frac{\pi}{4}\right)^2 - \frac{1}{8}\left(\frac{\pi}{4}\right)\sin\left(4\left(\frac{\pi}{4}\right)\right) - \frac{1}{32}\cos\left(4\left(\frac{\pi}{4}\right)\right)\right) - \left(\frac{1}{32}\right)$ is final M1 (condone)
		• $\left(\frac{1}{4}\left(\frac{\pi}{4}\right)^2 - \frac{1}{8}\left(\frac{\pi}{4}\right)\sin\left(4\left(\frac{\pi}{4}\right)\right) - \frac{1}{32}\cos\left(4\left(\frac{\pi}{4}\right)\right)\right) - (0+0+0)$ is final M0
8. (b)	Note	Alternative Method:
		$u = \sin^2 2x$ $\frac{dv}{dx} = x$ $u = x^2$ $\frac{dv}{dx} = \sin 4x$
		$\begin{bmatrix} u = \sin^2 2x & \frac{dv}{dx} = x \\ \frac{du}{dx} = 2\sin 4x & v = \frac{1}{2}x^2 \end{bmatrix}, \begin{bmatrix} u = x^2 & \frac{dv}{dx} = \sin 4x \\ \frac{du}{dx} = 2x & v = -\frac{1}{4}\cos 4x \end{bmatrix}$
		$\int x \sin^2 2x \mathrm{d}x$
		$=\frac{1}{2}x^{2}\sin^{2}2x - \int \frac{1}{2}x^{2}(2\sin 4x)dx$
		$=\frac{1}{2}x^{2}\sin^{2}2x - \int x^{2}\sin 4x dx$
		$= \frac{1}{2}x^{2}\sin^{2} 2x - \left(-\frac{1}{4}x^{2}\cos 4x - \int 2x \cdot \left(-\frac{1}{4}\cos 4x\right) dx\right)$
		$=\frac{1}{2}x^{2}\sin^{2}2x - \left(-\frac{1}{4}x^{2}\cos 4x + \frac{1}{2}\int x\cos 4x dx\right)$
		$=\frac{1}{2}x^{2}\sin^{2}2x + \frac{1}{4}x^{2}\cos 4x - \frac{1}{2}\int x\cos 4x dx$
		$= \frac{1}{2}x^{2}\sin^{2}2x + \frac{1}{4}x^{2}\cos 4x - \frac{1}{2}\left(\frac{1}{4}x\sin 4x + \frac{1}{16}\cos 4x\right)\{+c\}$
		$= \frac{1}{2}x^{2}\sin^{2} 2x + \frac{1}{4}x^{2}\cos 4x - \frac{1}{8}x\sin 4x - \frac{1}{32}\cos 4x \ \{+c\}$
		$V = \pi \int_{0}^{\frac{\pi}{4}} \left(\sqrt{x}\sin 2x\right)^{2} dx = \pi \left(\frac{\pi^{2}}{64} + \frac{1}{16}\right) \text{ or } \frac{1}{64}\pi^{3} + \frac{1}{16}\pi \text{ or } \frac{\pi}{2} \left(\frac{\pi^{2}}{32} + \frac{1}{8}\right) \text{ o.e.}$


Past Paper

Mathematics C4

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

the *x*-axis and the line with equation x = 1

The table below shows corresponding values of x and y for $y = \frac{6}{(e^x + 2)}$

x	0	0.2	0.4	0.6	0.8	1
y	2		1.71830	1.56981	1.41994	1.27165

(a) Complete the table above by giving the missing value of y to 5 decimal places.

(1)

(b) Use the trapezium rule, with all the values of y in the completed table, to find an estimate for the area of R, giving your answer to 4 decimal places.

(3)

(c) Use the substitution $u = e^x$ to show that the area of *R* can be given by

$$\int_{a}^{b} \frac{6}{u(u+2)} \, \mathrm{d}u$$

where a and b are constants to be determined.

(2)

(d) Hence use calculus to find the exact area of *R*.[Solutions based entirely on graphical or numerical methods are not acceptable.]

MSB - Page 9

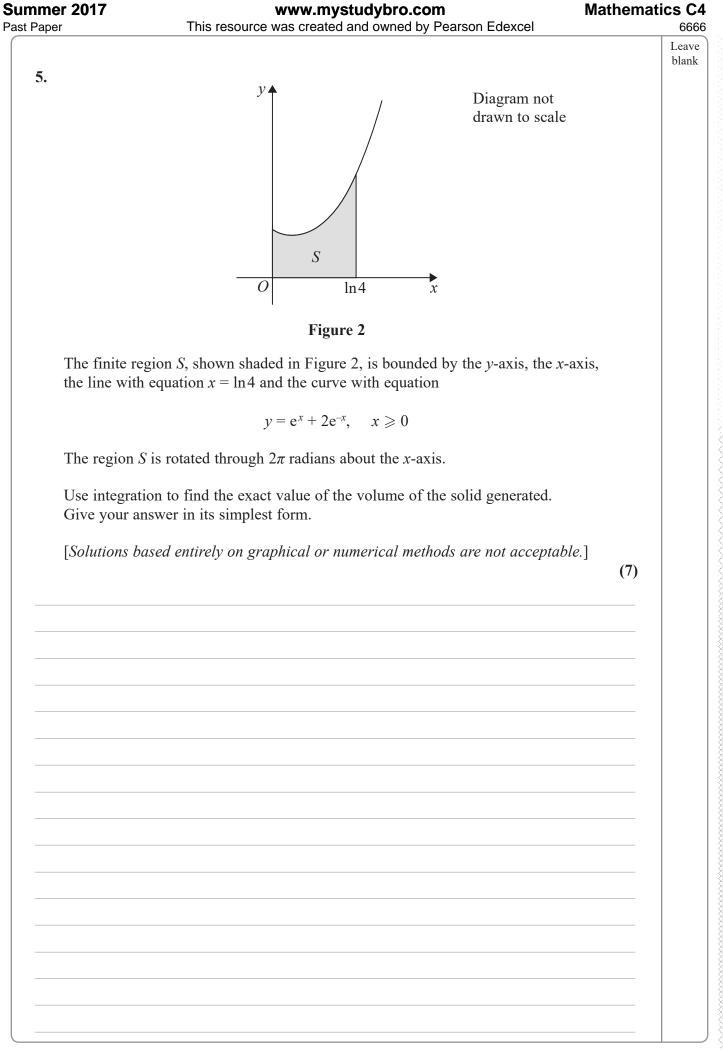
Summer 2		ics C4			
Past Paper (N Question Number	Iark Scheme) This resource was created and owned by Pearson Edexcel Scheme Notes	6666 Marks			
3.	x 0 0.2 0.4 0.6 0.8 1 y 2 1.8625426 1.71830 1.56981 1.41994 1.27165 $y = \frac{6}{(2 + e^x)}$				
(a)	{At $x = 0.2$,} $y = 1.86254 (5 \text{ dp})$ 1.86254	B1 cao			
	Note: Look for this value on the given table or in their working.	[1]			
(b)	$\frac{1}{2}(0.2)\left[\frac{2+1.27165+2(\text{their } 1.86254+1.71830+1.56981+1.41994)}{10}\right] \qquad \text{Outside brackets } \frac{1}{2} \times (0.2)$	B1 o.e.			
	For structure of []	M1			
	$\left\{ = \frac{1}{10} (16.41283) \right\} = 1.641283 = 1.6413 (4 \text{ dp}) $ anything that rounds to 1.6413	A1			
(a)		[3]			
(c)	$\left\{ u = e^x \text{ or } x = \ln u \vartriangleright \right\}$				
	$\frac{du}{dx} = e^x \text{ or } \frac{du}{dx} = u \text{ or } \frac{dx}{du} = \frac{1}{u} \text{ or } du = u dx \text{ etc., and } \grave{0} \frac{6}{(e^x + 2)} dx = \grave{0} \frac{6}{(u + 2)u} du \text{ See notes}$	B1 *			
	$\{x = 0\} \vartriangleright a = e^0 \vartriangleright \underline{a} = 1$ $a = 1 \text{ and } b = e \text{ or } b = e^1$ $a = 1 \text{ and } b = e \text{ or } b = e^1$	B1			
	$\{x = 1\} \vartriangleright b = e^{1} \vartriangleright \underline{b} = e$ or evidence of $0 \rightarrow 1$ and $1 \rightarrow e$ NOTE: 1 st B1 mark CANNOT be recovered for work in part (d)				
	NOTE: 2 nd B1 mark CAN be recovered for work in part (d)	[2]			
(d) Way 1	$\frac{6}{u(u+2)} \circ \frac{A}{u} + \frac{B}{(u+2)}$ Writing $\frac{6}{u(u+2)} \circ \frac{A}{u} + \frac{B}{(u+2)}$, o.e. or $\frac{1}{u(u+2)} \circ \frac{P}{u} + \frac{Q}{(u+2)}$, $\triangleright 6 \circ A(u+2) + Bu$ o.e., and a complete method for finding the value of at least one of their A or their B (or their P or their Q)	M1			
	$u = 0 \vartriangleright A = 3$ Both their $A = 3$ and their $B = -3$. (Or their $P = \frac{1}{2}$ and their	A1			
	$u = -2 \vartriangleright B = -3$ $Q = -\frac{1}{2}$ with the factor of 6 in front of the integral sign)				
	$\int \frac{6}{u(u+2)} du = \int \left(\frac{3}{u} - \frac{3}{(u+2)}\right) du$ Integrates $\frac{M}{u} \pm \frac{N}{u\pm k}$, $M, N, k^{-1} 0$; (i.e. <i>a two term partial fraction</i>) to obtain either $\pm / \ln(au)$ or $\pm m \ln(b(u\pm k))$; $/, m, a, b^{-1} 0$	M1			
	$= 3\ln u - 3\ln(u+2)$ or $= 3\ln 2u - 3\ln(2u+4)$ Integration of both terms is correctly followed through from their M and from their N.	A1 ft			
	$\begin{cases} So [3ln u - 3ln(u + 2)]_{1}^{e} \end{cases}$ $= (3ln(e) - 3ln(e + 2)) - (3ln1 - 3ln3)$ [Note: A proper consideration of the limit of $u = 1$ is required for this mark] dependent on the 2 nd M mark Applies limits of e and 1 (or their <i>b</i> and their <i>a</i> , where $b > 0, b^{-1} 1, a > 0$) in <i>u</i> or applies limits of 1 and 0 in <i>x</i> and subtracts the correct way round.	dM1			
	$= 3 - 3\ln(e+2) + 3\ln 3 \text{ or } 3(1 - \ln(e+2) + \ln 3) \text{ or } 3 + 3\ln\left(\frac{3}{e+2}\right)$ or $3\ln\left(\frac{e}{e+2}\right) - 3\ln\left(\frac{1}{3}\right) \text{ or } 3 - 3\ln\left(\frac{e+2}{3}\right) \text{ or } 3\ln\left(\frac{3e}{e+2}\right) \text{ or } \ln\left(\frac{27e^3}{(e+2)^3}\right)$ see notes	A1 cso			
	Note: Allow e^1 in place of e for the final A1 mark.	[6]			
	Note: Give final A0 for $3 - 3\ln e + 2 + 3\ln 3$ (i.e. bracketing error) unless recovered. Note: Give final A0 for $3 - 3\ln(e+2) + 3\ln 3 - 3\ln 1$, where $3\ln 1$ has not been simplified to 0	12			
	Note: Give final A0 for $3\ln e - 3\ln(e+2) + 3\ln 3$, where $3\ln e$ has not been simplified to 3				

	Mark Cal-	www.mystudybro.com Mathematics C4				
	Mark Sche	Question 5 Notes				
3. (b)	Note	M1: Do not allow an extra y-value <i>or</i> a repeated y value in their []				
		Do not allow an omission of a y-ordinate in their [] for M1 unless they give the correct answer of				
	NI - 4 -	awrt 1.6413, in which case both M1 and A1 can be scored.				
	Note	A1: Working must be seen to demonstrate the use of the trapezium rule. $(A_{1} + a_{1}) = 1 \cdot (A_{1} + b_{2}) \cdot (A_{1} $				
	NT ((Actual area is 1.64150274)				
	Note	Full marks can be gained in part (b) for awrt 1.6413 even if B0 is given in part (a)				
	Note	Award B1M1A1 for				
		$\frac{1}{10}(2+1.27165) + \frac{1}{5}(\text{their } 1.86254 + 1.71830 + 1.56981 + 1.41994) = \text{awrt } 1.6413$				
	Brack	eting mistakes: Unless the final answer implies that the calculation has been done correctly				
	Award	B1M0A0 for $\frac{1}{2}(0.2) + 2 + 2$ (their 1.86254 + 1.71830 + 1.56981 + 1.41994) + 1.27165 (=16.51283)				
	Award	B1M0A0 for $\frac{1}{2}(0.2)(2 + 1.27165) + 2$ (their 1.86254 + 1.71830 + 1.56981 + 1.41994) (=13.468345)				
		B1M0A0 for $\frac{1}{2}(0.2)(2) + 2$ (their 1.86254 + 1.71830 + 1.56981 + 1.41994) + 1.27165 (=14.61283)				
		ative method: Adding individual trapezia				
	Area ≈	$0.2 \times \left[\frac{2 + "1.86254"}{2} + \frac{"1.86254" + 1.71830}{2} + \frac{1.71830 + 1.56981}{2} + \frac{1.56981 + 1.41994}{2} + \frac{1.41994 + 1.27165}{2} \right]$				
	Theu					
	=	1.641283				
	B1	0.2 and a divisor of 2 on all terms inside brackets				
	M1	First and last ordinates once and two of the middle ordinates inside brackets ignoring the 2				
	A1 anything that rounds to 1.6413					
3. (c)	1 st B1	Must start from either				
		• $\hat{0} y dx$, with integral sign and dx				
		• $\hat{D} \frac{6}{(e^x + 2)} dx$, with integral sign and dx				
		• $\hat{0}\frac{6}{(e^x+2)}\frac{dx}{du}du$, with integral sign and $\frac{dx}{du}du$				
		and state either $\frac{du}{dx} = e^x$ or $\frac{du}{dx} = u$ or $\frac{dx}{du} = \frac{1}{u}$ or $du = u dx$				
		and end at $\hat{0}\frac{6}{u(u+2)}$ du, with integral sign and du, with no incorrect working.				
	Note	So, just writing $\frac{du}{dx} = e^x$ and $\grave{0}\frac{6}{(e^x + 2)}dx = \grave{0}\frac{6}{u(u + 2)}du$ is sufficient for 1 st B1				
	Note	Give 2^{nd} B0 for $b = 2.718$, without reference to $a = 1$ and $b = e$ or $b = e^{1}$				
	Note	You can also give the 1 st B1 mark for using a reverse process. i.e.				
		Proceeding from $\grave{0}\frac{6}{u(u+2)} du$ to $\grave{0}\frac{6}{(e^x+2)} dx$, with no incorrect working,				
		and stating either $\frac{du}{dx} = e^x$ or $\frac{du}{dx} = u$ or $\frac{dx}{du} = \frac{1}{u}$ or $du = u dx$ Give final A0 for 3 - 3ln(e + 2) + 3ln3 simplifying to 1 - ln(e + 2) + ln3				
3. (d)	Note	Give final A0 for $3 - 3\ln(e+2) + 3\ln 3$ simplifying to $1 - \ln(e+2) + \ln 3$				
		(i.e. dividing their correct final answer by 3)				
		Otherwise, you can ignore incorrect working (isw) following on from a correct exact value.				
		To the who, you can ignore meeticet working (15w / 1010 wing 011 from a correct chact value.				
	Note					
	Note Note	A decimal answer of 1.641502724 (without a correct exact answer) is final A0 $\left[-3\ln(u+2) + 3\ln u\right]_{1}^{e}$ followed by awrt 1.64 (without a correct exact answer) is final M1A0				

		Question 3 Notes Continued
3. (d)	Note	BE CAREFUL! Candidates will assign their own "A" and "B" for this question.
	Note	Writing down $\frac{6}{(u+2)u}$ in the form $\frac{A}{(u+2)} + \frac{B}{u}$ with at least one of A or B correct is 1 st M1
	Note	Writing down $\frac{6}{(u+2)u}$ as $\frac{-3}{(u+2)} + \frac{3}{u}$ is 1 st M1 1 st A1.
	Note	Condone $\int \left(\frac{3}{u} - \frac{3}{(u+2)}\right) du$ to give $3\ln u - 3\ln u + 2$ (poor bracketing) for 2^{nd} A1.
	Note	Award M0A0M1A1ft for a candidate who writes down
		e.g. $\int \frac{6}{u(u+2)} du = \int \left(\frac{6}{u} + \frac{6}{(u+2)}\right) du = 6\ln u + 6\ln(u+2)$
		AS EVIDENCE OF WRITING $\frac{6}{u(u+2)}$ AS PARTIAL FRACTIONS.
	Note	Award M0A0M0A0 for a candidate who writes down
		$\hat{0}\frac{6}{u(u+2)}du = 6\ln u + 6\ln(u+2)$ or $\hat{0}\frac{6}{u(u+2)}du = \ln u + 6\ln(u+2)$
		WITHOUT ANY EVIDENCE OF WRITING $\frac{6}{u(u+2)}$ as partial fractions.
	Note	Award M1A1M1A1 for a candidate who writes down
		$\dot{0}\frac{6}{u(u+2)}du = 3\ln u - 3\ln(u+2)$
		WITHOUT ANY EVIDENCE OF WRITING $\frac{6}{u(u+2)}$ as partial fractions.
	Note	If they lose the "6" and find $\hat{0}_1^e \frac{1}{u(u+2)} du$ we can allow a maximum of M1A0M1A1ftM1A0

Past Paper (Mark Scheme)

www.mystudybro.com This resource was created and owned by Pearson Edexcel


Mathematics C4

		Question	n 3 Notes Contin	nued			
3. (d) Way 2	$\left\{\int \frac{6}{u^2 + 2u} du = \int \frac{3(2u+2)}{u^2 + 2u} du\right\}$	$\mathrm{d}u - \int \frac{6u}{u^2 + 2u} \mathrm{d}u$	}				
	$=\int \frac{3(2u+2)}{u^2+2u} du - \int \frac{6}{u+2} du \qquad $		$\frac{\partial(2u+2)}{u^2+2u} \left\{ \mathrm{d}u \right\} \pm \check{0} \frac{\partial}{u+2} \left\{ \mathrm{d}u \right\}, \ \alpha, \beta, \delta \neq 0$			M1	
	$\int u + 2u$ $\int u + 2$		Correct expression				
		Integrates $\frac{\pm I}{2}$	$\frac{M(2u+2)}{u^2+2u} \pm \frac{M}{u\pm u}$	$\frac{M}{k}, M, N, k^{-1}$	0, to obtain	M1	
`	$= 3\ln(u^2 + 2u) - 6\ln(u + 2)$	any on	e of $\pm / \ln(u^2 +$		(<i>b</i> (<i>u</i> ± <i>k</i>)); /, <i>m</i> , <i>b</i> ¹ 0	M11	
		Integration of bot	Integration of both terms is correctly followed through from their M and from their N				
	$\left\{\operatorname{So},\left[\operatorname{3ln}(u^2+2u)-\operatorname{6ln}(u+2u)\right]\right\}$	$\left[2\right]_{1}^{e}$		Applies limit or their b and th $b > 0, b^{-1}$ 1,	ts of e and 1 eir <i>a</i> , where	dM1	
	$= \left(3\ln(e^2 + 2e) - 6\ln(e + 2)\right) - \left(3\ln 3 - 6\ln 3\right)$		or applies limits of 1 and 0 in <i>x</i> and subtracts the correct way round.				
	$= 3\ln(e^2 + 2e) - 6\ln(e + 2) + $	3ln3	$3\ln(e^2 + 2e) - 6\ln(e + 2) + 3\ln 3$		A1 o.e.		
	Ambring w. G. 1					[6]	
3. (d) Way 3	Applying $u = q - 1$	■ 1+e		∠ > ¬1+e			
Way 3	$\left\{\int_{1}^{e} \frac{6}{u(u+2)} \mathrm{d}u =\right\} \int_{2}^{1+e} \frac{1}{(\theta-1)^{1+e}} \mathrm{d}u =$	$\frac{6}{-1)(\theta+1)}d\theta = \int_{2}^{1+\epsilon}$	$\frac{6}{\theta^2 - 1} \mathrm{d}u = \left\lfloor 3\ln \right\rfloor$	$\left(\frac{\theta-1}{\theta+1}\right)\Big]_2^{1/2}$		M1A1M1A1	
	$= 3\ln\left(\frac{1+e-1}{e+1+1}\right) - 3\ln\left(\frac{2-2}{2+1}\right)$	$\frac{1}{1} = 3\ln\left(\frac{e}{e+2}\right) -$	$3\ln\left(\frac{1}{3}\right)$	3 rd M mark i on	s dependent 2 nd M mark	dM1A1	
						[6]	

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Past Paper (Mark Scheme)

www.mystudybro.com This resource was created and owned by Pearson Edexcel

Mathematics C4

Past Paper (r	Mark Schei	me) This resource was crea	ated and owned by	Pearson Edexcel	6666			
Question Number		Scheme		Notes	Marks			
5.	$y = e^{x}$	$x^{x} + 2e^{-x}, x^{3}0$						
Way 1	$\{V = \} \mathcal{P} \dot{0}_{0}^{\ln 4} \left(e^{x} + 2e^{-x} \right)^{2} dx$		Igi	B1				
	-	$\bullet \ln 4$, -					
	$= \{\pi$	$\int_{0}^{10^{-2x}} \left(e^{2x} + 4e^{-2x} + 4 \right) dx$	```	$(2e^{-x})^2 \rightarrow \pm \partial e^{2x} \pm \partial e^{-2x} \pm \partial$ where nore π , integral sign, limits and dx . This can be implied by later work.	M1			
				one of either $\pm a e^{2x}$ to give $\pm \frac{a}{2} e^{2x}$	M1			
			(or $\pm b e^{-2x}$ to give $\pm \frac{b}{2} e^{-2x} \partial_{x} b^{\dagger} \partial_{y}$				
	= {p	$\left[\frac{1}{2}e^{2x} - 2e^{-2x} + 4x\right]^{m4}$		dependent on the 2 nd M mark				
				$e^{2x} + 4e^{-2x} \rightarrow \frac{1}{2}e^{2x} - 2e^{-2x},$	A1			
			whic	ch can be simplified or un-simplified				
				$4 \rightarrow 4x \text{ or } 4e^{0}x$	B1 cao			
	= {p}	$\left(\frac{1}{2}e^{2(\ln 4)} - 2e^{-2(\ln 4)} + 4(\ln 4)\right) - \left(\frac{1}{2}e^{2(\ln 4)}\right)$	$e^{0} - 2e^{0} + 4(0) \bigg) \bigg)$	 dependent on the previous method mark. Some evidence of applying limits of ln 4 o.e. and 0 to a changed function in <i>x</i> and subtracts the correct way round. Note: A proper consideration of the limit of 0 is required. 	dM1			
	$= \{\pi\} \Big(\Big)$							
	($= \frac{75}{8}\rho + 4\rho \ln 4 \text{ or } \frac{75}{8}\rho + 8\rho$ or $\frac{75}{8}\rho + \ln 2^{8\rho}$ or $\frac{75}{8}\rho + \rho \ln 2^{8\rho}$) (0)	A1 isw			
					[7] 7			
			Question 5 N	lotes	/			
5.	Note	π is only required for the 1 st B						
	Note	e Give 1 st B0 for writing $\rho \dot{0} y^2 dx$ followed by $2\rho \dot{0} (e^x + 2e^{-x})^2 dx$						
	Note	Give 1 st M1 for $(e^x + 2e^{-x})^2 \rightarrow e^{2x} + 4e^{-2x} + 2e^0 + 2e^0$ because $d = 2e^0 + 2e^0$						
	Note	A decimal answer of 46.8731 or $p(14.9201)$ (without a correct exact answer) is A0						
	Note	$p\left[\frac{1}{2}e^{2x} - 2e^{-2x} + 4x\right]_{0}^{\ln 4}$ followed by awrt 46.9 (without a correct exact answer) is final dM1A0						
	Note			rm $a\rho + b\rho \ln c$ or $\rho(a + b \ln c)$,				
		where $a = \frac{75}{8}$ or $9\frac{3}{8}$ or 9.375						
	Note	Give B1M0M1A1B0M1A0 for	r the common respo	onse				
		$\int_{0}^{\ln 4} \left(e^{x} + 2e^{-x} \right)^{2} dx \rightarrow \rho \int_{0}^{\ln 4} \left(e^{x} + 2e^{-x} \right)^{2} dx$	$e^{2x} + 4e^{-2x} dx = \rho \left[-\frac{1}{2} \int dx dx \right]$	$\frac{1}{2}e^{2x} - 2e^{-2x} \bigg]_{0}^{\ln 4} = \frac{75}{8}p$				


Summer		w.mystudybro		Mathema	tics C4
Past Paper (Question (Number	Mark Scheme) This resource was of Scheme	created and owne	d by Pearson I	Edexcel Notes	6666 Marks
5.	$y = e^x + 2e^{-x}, x^3 0$				
Way 2	$\left\{V=\right\}\mathcal{P} \overset{\ln 4}{0} \left(\mathrm{e}^{x}+2\mathrm{e}^{-x}\right)^{2} \mathrm{d}x$		Ignore limit	For $\pi \int (e^x + 2e^{-x})^2$ is and dx. Can be implied.	B1
	$u = e^x \vartriangleright \frac{du}{dx} = e^x = u \text{ and } x = \ln 4$	Dert $u = 4, x = 0$	-		
	$V = \left\{ \mathcal{P} \right\} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} \frac{1}{u} du = \left\{ \mathcal{P} \right\} \int_{1}^{4} \left[u + \frac{2}{u} \right]^{2} \frac{1}{u} du = \left\{ \mathcal{P} \right\} \int_{1}^{4} \left[u + \frac{2}{u} \right]^{2} \frac{1}{u} du = \left\{ \mathcal{P} \right\} \int_{1}^{4} \left[u + \frac{2}{u} \right]^{2} \frac{1}{u} du = \left\{ \mathcal{P} \right\} \int_{1}^{4} \left[u + \frac{2}{u} \right]^{2} \frac{1}{u} du = \left\{ \mathcal{P} \right\} \int_{1}^{4} \left[u + \frac{2}{u} \right]^{2} \frac{1}{u} du = \left\{ \mathcal{P} \right\} \int_{1}^{4} \left[u + \frac{2}{u} \right]^{2} \frac{1}{u} du = \left\{ \mathcal{P} \right\} \int_{1}^{4} \left[u + \frac{2}{u} \right]^{2} \frac{1}{u} du = \left\{ \mathcal{P} \right\} \int_{1}^{4} \left[u + \frac{2}{u} \right]^{2} \frac{1}{u} du = \left\{ \mathcal{P} \right\} \int_{1}^{4} \left[u + \frac{2}{u} \right]^{2} \frac{1}{u} du = \left\{ \mathcal{P} \right\} \int_{1}^{4} \left[u + \frac{2}{u} \right]^{2} \frac{1}{u} du = \left\{ \mathcal{P} \right\} \int_{1}^{4} \left[u + \frac{2}{u} \right]^{2} \frac{1}{u} du = \left\{ \mathcal{P} \right\} \int_{1}^{4} \left[u + \frac{2}{u} \right]^{2} \frac{1}{u} du = \left\{ \mathcal{P} \right\} \int_{1}^{4} \left[u + \frac{2}{u} \right]^{2} \frac{1}{u} du = \left\{ \mathcal{P} \right\} \int_{1}^{4} \left[u + \frac{2}{u} \right]^{2} \frac{1}{u} du = \left\{ \mathcal{P} \right\} \int_{1}^{4} \left[u + \frac{2}{u} \right]^{2} \frac{1}{u} du = \left\{ \mathcal{P} \right\} \int_{1}^{4} \left[u + \frac{2}{u} \right]^{2} \frac{1}{u} du = \left\{ \mathcal{P} \right\} \int_{1}^{4} \left[u + \frac{2}{u} \right]^{2} \frac{1}{u} du = \left\{ \mathcal{P} \right\} \int_{1}^{4} \left[u + \frac{2}{u} \right]^{2} \frac{1}{u} du = \left\{ \mathcal{P} \right\} \int_{1}^{4} \left[u + \frac{2}{u} \right]^{2} \frac{1}{u} du = \left\{ \mathcal{P} \right\} \int_{1}^{4} \left[u + \frac{2}{u} \right]^{2} \frac{1}{u} du = \left\{ \mathcal{P} \right\} \int_{1}^{4} \left[u + \frac{2}{u} \right]^{2} \frac{1}{u} du = \left\{ \mathcal{P} \right\} \int_{1}^{4} \left[u + \frac{2}{u} \right]^{2} \frac{1}{u} du = \left\{ \mathcal{P} \right\} \int_{1}^{4} \left[u + \frac{2}{u} \right]^{2} \frac{1}{u} du = \left\{ \mathcal{P} \right\} \int_{1}^{4} \left[u + \frac{2}{u} \right]^{2} \frac{1}{u} du = \left\{ \mathcal{P} \right\} \int_{1}^{4} \left[u + \frac{2}{u} \right]^{2} \frac{1}{u} du = \left\{ \mathcal{P} \right\} \int_{1}^{4} \left[u + \frac{2}{u} \right]^{2} \frac{1}{u} du = \left\{ \mathcal{P} \right\} \int_{1}^{4} \left[u + \frac{2}{u} \right]^{2} \frac{1}{u} du = \left\{ \mathcal{P} \right\} \int_{1}^{4} \left[u + \frac{2}{u} \right]^{2} \frac{1}{u} du = \left\{ \mathcal{P} \right\} \int_{1}^{4} \left[u + \frac{2}{u} \right]^{2} \frac{1}{u} du = \left\{ \mathcal{P} \right\} \int_{1}^{4} \left[u + \frac{2}{u} \right]^{2} \frac{1}{u} du = \left\{ \mathcal{P} \right\} \int_{1}^{4} \left[u + \frac{2}{u} \right]^{2} \frac{1}{u} du = \left\{ \mathcal{P} \right\} \int_{1}^{4} \left[u + \frac{2}{u} \right]^{2} \frac{1}{u} du = \left\{ \mathcal{P} \right\} \int_{1}^{4} \left[u + \frac{2}{u} \right]^{2} \frac{1}{u} du = \left\{ \mathcal{P} \right\} \int_{1}^{4} \left[u + \frac{2}{u} \right]^{2} \frac{1}{u} du = \left\{ u + \frac{2}{u} \right\} \int_{1}^{4} \left[u + \frac{2}{u} \right]^{2} \frac{1}{u} du = \left\{ u + \frac{2}{u} \right\}$	$\left(u^2 + \frac{4}{u^2} + 4\right)\frac{1}{u}d$	и		
	$= \left\{ \mathcal{P} \right\} \int_{1}^{4} \left(u + \frac{4}{u^3} + \frac{4}{u} \right) \mathrm{d}u$		$(e^x + 2e^{-x})$ W Ignore π , in	$\binom{x}{2} \rightarrow \pm \partial u \pm b u^{-3} \pm \partial u^{-1}$ where $u = e^x$, α , β , $\delta \neq 0$. tegral sign, limits and du .	<u>M1</u>
	Гл р Л ⁴		,	either $\pm \partial u$ to give $\pm \frac{\partial}{2}u^2$ -2 ∂ , b^{-2} ∂ , where $u = e^x$	M1
	$= \left\{ p \right\} \left[\frac{1}{2}u^2 - \frac{2}{u^2} + 4\ln u \right]_{1}^{2}$	s	-	ndent on the 2 nd M mark $u + 4u^{-3} \rightarrow \frac{1}{2}u^2 - 2u^{-2}$, n-simplified, where $u = e^x$	A1
			41	$u^{-1} \rightarrow 4 \ln u$, where $u = e^x$	B1 cao
	$= \left\{ p \right\} \left[\left(\frac{1}{2} (4)^2 - \frac{2}{(4)^2} + 4 \ln 4 \right) - \left(\frac{1}{2} (1)^2 + 4 \ln 4 \right) \right]$	$(1)^{2} - \frac{2}{(1)^{2}} + 4\ln 1$	mark. S limi function in	t on the previous method Some evidence of applying ts of 4 and 1 to a changed in u [or ln 4 o.e. and 0 to an function in x] and subtracts the correct way round.	dM1
	$= \{\pi\} \left(\left(8 - \frac{1}{8} + 4\ln 4 \right) - \left(\frac{1}{2} - 2 \right) \right)$				
	$=\frac{75}{8}\rho + 4\rho\ln 4$ or $\frac{75}{8}\rho$	+ $8\rho\ln 2$ or $\pi\left(\frac{75}{8}\right)$	$(\frac{5}{2} + 4\ln 4)$ or	$\pi\left(\frac{75}{8} + 8\ln 2\right)$	A1 isw
	or $\frac{75}{8}\rho + \ln 2^{8\rho}$ or $\frac{75}{8}\rho + \rho$	$2\ln 256$ or $\ln \left(2^{5}\right)$	$\left(e^{\frac{75}{8}\rho} \right) = e^{\frac{75}{8}\rho} e^{7$	$2(75 + 32\ln 4)$, etc	A1 18W
					[7]

Leave blank

MSB - Page 17

28

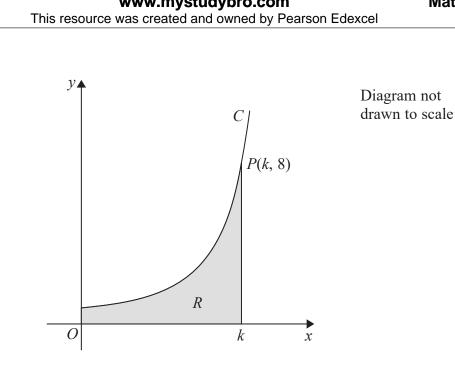
The finite region R, shown shaded in Figure 4, is bounded by the curve C, the y-axis, the *x*-axis and the line with equation x = k.

(b) Show that the area of *R* can be expressed in the form

The point P(k, 8) lies on C, where k is a constant.

$$\lambda \int_{\alpha}^{\beta} \left(\theta \sec^2 \theta + \tan \theta \sec^2 \theta \right) \mathrm{d}\theta$$

9 1 0 9 A 0 2 8 3 2


where λ , α and β are constants to be determined.

(4)

(c) Hence use integration to find the exact value of the area of *R*.

DO NOT WRITE IN THIS AREA

 $x = 3\theta \sin \theta$, $y = \sec^3 \theta$, $0 \le \theta < \frac{\pi}{2}$

Figure 4 shows a sketch of part of the curve C with parametric equations

DO NOT WRITE IN THIS AREA

8.

(2)

(6)

Summer Past Pager	2017 Mark Scheme) This resou		ed and owr	r o.com ned by Pearso	Mathematics on Edexcel Notes 6	C4 6 0 arks	
8.	$x = 3q\sin q, \ y = \sec^3 q, \ 0 \notin q <$	$\frac{p}{2}$					
(a)	$\{\text{When } y = 8, \} 8 = \sec^3 \theta \Rightarrow \cos^3 \theta = \frac{1}{8} \Rightarrow \cos \theta = \frac{1}{2} \Rightarrow \theta = \frac{\pi}{3}$ $k \text{ (or } x) = 3\left(\frac{\pi}{3}\right)\sin\left(\frac{\pi}{3}\right)$			Sets $y = 8$ to find θ and attempts to substitute their θ into $x = 3q \sin q$	M1		
	so k (or x) = $\frac{\sqrt{3}\pi}{2}$				$\frac{\sqrt{3}\rho}{2} \text{ or } \frac{3\rho}{2\sqrt{3}}$	A1	
	Note: Obtaining tw	vo value for	k without a	ccepting the c	correct value is final A0	[2]	
(b)	$\frac{\mathrm{d}x}{\mathrm{d}\theta} = 3\sin\theta + 3\theta\cos\theta$				$3\theta \sin \theta \rightarrow 3\sin \theta + 3\theta \cos \theta$ Can be implied by later working	B1	
	$\left\{\int y \frac{\mathrm{d}x}{\mathrm{d}q} \left\{\mathrm{d}q\right\}\right\} = \int (\sec^3 q) (3s)$	$inq + 3q\cos \theta$	q) $\left\{ dq \right\}$		Applies $(\pm K \sec^3 q)$ (their $\frac{dx}{dq}$) Ignore integral sign and dq ; K^{-1} 0	M1	
	$= 3 \hat{0} q \sec^2 q + \tan q \sec^2 q \mathrm{d}q$			the correct re	esult no errors in their working, e.g. bracketing or manipulation errors. I sign and $d\theta$ in their final answer.	A1 *	
	$x=0$ and $x=k \implies \underline{\alpha}=0$ and	d $\beta = \frac{\pi}{3}$	$\alpha = 0$	and $\beta = \frac{\pi}{3}$	or evidence of $0 \rightarrow 0$ and $k \rightarrow \frac{\pi}{3}$	B1	
	Note: The w	ork for the f	inal B1 mar	k must be see	en in part (b) only.	[4]	
					$\rightarrow Aqg(q) - B \int g(q), A > 0, B > 0,$ a trigonometric function in q and	M1	
(c)	$\left\{ \grave{0} q \sec^2 q \mathrm{d} q \right\} = q \tan q - \grave{0} t$	$g(q) = \text{their } \hat{g} \sec^2 q dq$. [Note: $g(q)^{-1} \sec^2 q$]					
(c) Way 1	$\left(\bigcup_{i=1}^{i} \operatorname{gran}_{i=1}^{i} \operatorname{gran}_{i=1}$		de	ependent on the previous M mark			
			Either $/q \sec^2 q \rightarrow Aq \tan q - B \int \tan q, A > 0, B > 0$			dM1	
					or $q \sec^2 q \to q \tan q - \int \tan q$		
	$= q \tan q - \ln(\sec q)$		qse	$c^2 q \rightarrow q \tan q$	$q - \ln(\sec q)$ or $q \tan q + \ln(\cos q)$ or		
	$\mathbf{or} = q \tan q$	$+\ln(\cos q)$					
	Note: Condone	$q \sec^2 q \rightarrow$	$q \tan q - \ln(q)$	$(\sec x)$ or qt	$an q + ln(\cos x)$ for A1		
	$\left\{ \dot{0} \tan q \sec^2 q \mathrm{d}q \right\}$		$\tan\theta \sec$	$^{2}\theta$ or $/\tan\theta$	$q \sec^2 q \rightarrow \pm C \tan^2 q \text{ or } \pm C \sec^2 q$ or $\pm C u^{-2}$, where $u = \cos q$	M1	
	$= \frac{1}{2}\tan^2 q \text{ or } \frac{1}{2}\sec^2 q$	tan q se	2q or $\frac{1}{2\cos^2 q}$ or $\tan^2 q - \frac{1}{2}\sec^2 q$				
	or $\frac{1}{2u^2}$ where $u = \cos q$ or $\frac{1}{2}u^2$ where $u = \tan q$				$u = \cos q \text{ or } 0.5u^2$, where $u = \tan q$ $\rightarrow \frac{\lambda}{2} \tan^2 \theta \text{ or } \frac{\lambda}{2} \sec^2 \theta \text{ or } \frac{\lambda}{2\cos^2 \theta}$	A1	
	2		or 0.5/ <i>u</i>	$^{-2}$, where $u =$	$= \cos q$ or $0.5/u^2$, where $u = \tan q$		
	$\left\{\operatorname{Area}(R)\right\} = \left[3q \tan q - 3\ln(\sec q)\right]$	$+\frac{3}{2}\tan^2 q \bigg]_0^{\frac{p}{3}}$	or $\left[3q \tan q \right]$	$a - 3\ln(\sec q) +$	$\frac{3}{2}\sec^2 q \bigg]_0^{\frac{\rho}{3}}$		
	$= \left(3\left(\frac{\pi}{3}\right)\sqrt{3} - 3\ln 2 + \right)$	$\left(\frac{3}{2}(3)\right) - (0)$	or $\left(3\left(\frac{\pi}{3}\right)\right)$	$\int \sqrt{3} - 3\ln 2 + \frac{3}{2}(1)$	$(4)) - \left(\frac{3}{2}\right) $		
	$=\frac{9}{2}+\sqrt{3}\rho-3\ln 2$	or $\frac{9}{2} + \sqrt{3}$	$p + 3\ln\left(\frac{1}{2}\right)$	or $\frac{9}{2} + \sqrt{3} x$	$\tau - \ln 8$ or $\ln \left(\frac{1}{8}e^{\frac{9}{2}+\sqrt{3}\rho}\right)$	A1 o.e.	
						[6]	
						12	

www.mystudybro.com This resource was created and owned by Pearson Edexcel

Mathematics C4

Mark Schem	e) This resource was created a	and owr	ed by Pearson Edexcel	6666			
	Scheme		Notes	Marks			
Way 2 for the first 5 marks: Applying integration by parts on $\hat{0}(q + \tan q)\sec^2 q dq$							
$\hat{0}^{(q \sec^2 q)}$	$(q + \tan q \sec^2 q) dq = \hat{0}(q + \tan q) \sec^2 q$	$ec^2 q dq$,	$\begin{cases} u = q + \tan q \Rightarrow \frac{\mathrm{d}u}{\mathrm{d}q} = 1 + \sec^2 q \\ \frac{\mathrm{d}v}{\mathrm{d}q} = \sec^2 q \Rightarrow v = \tan q = \mathrm{g}(q) \end{cases}$				
h(q) and g(q) are trigonometric functions in q and g(q) = their $\tilde{g} \sec^2 q dq$. [Note: g(q) ¹ sec ² q]							
		A(q	+ $\tan q$)g(q) - B)(1 + h(q))g(q), $A > 0, B > 0$	M1			
			dependent on the previous M mark				
$= (\alpha + ta)$	$(n\alpha)\tan\alpha - \hat{\mathbf{h}}(1 + \sec^2\alpha)\tan\alpha \{d\alpha\}$		Either $/\left[(q + \tan q)\sec^2 q\right] \rightarrow$				
(9 - 4	$(q + \tan q) \tan q = 0$		$A(q + \tan q)\tan q - B \hat{0}(1 + \mathbf{h}(q))\tan q, A^{-1} 0, B > 0$				
			or $(q + \tan q) \tan q - \hat{0}(1 + \mathbf{h}(q)) \tan q$				
$= (q + \tan q) \tan q - \dot{0} (\tan q + \tan q \sec^2 q) \{ dq \}$							
= (q + ta)	$(\ln q)\tan q - \ln(\sec q) - \hat{0}\tan q \sec^2 q$	$\left\{\mathrm{d}q\right\}$	$(q + \tan q)\tan q - \ln(\sec q) \text{ o.e.}$ or $\left[(q + \tan q)\tan q - \ln(\sec q) \right]$ o.e.	A1			
= (q + ta)	$\ln q)\tan q - \ln(\sec q) - \frac{1}{2}\tan^2 q$		$\tan q \sec^2 q \to \pm C \tan^2 q \text{ or } \pm C \sec^2 q$ $(q + \tan q) \tan q - \frac{1}{2} \tan^2 q$	M1			
or = (<i>q</i> +	$\frac{1}{2}$			A1			
Note	Allow the first two marks in part (c) for $q \tan q - \hat{0} \tan q$ embedded in their working						
Note	Allow the first three marks in part (c) for $q \tan q - \ln(\sec q)$ embedded in their working						
Note	Allow 3 rd M1 2 nd A1 marks for either $\tan^2 q - \frac{1}{2}\tan^2 q$ or $\tan^2 q - \frac{1}{2}\sec^2 q$						
	embedded in their working						
	Question 8 Notes						
Note							
Note	Allow M1 for an answer of $k = 3\left(\arccos(\frac{1}{2})\right)\sin\left(\arccos(\frac{1}{2})\right)$ without reference to $\frac{\sqrt{3}\rho}{2}$ or $\frac{1}{2}$						
	$\frac{\mathbf{Way 2 fo}}{\mathbf{\hat{0}}} (q \sec^2 \mathbf{\hat{0}})$ $h(q) \text{ and}$ $= (q + ta)$ $= (q + ta)$ $= (q + ta)$ $= (q + ta)$ $or = (q + ta)$ $or = (q + ta)$ $rac{\mathbf{Note}}{\mathbf{Note}}$ \mathbf{Note}	SchemeWay 2 for the first 5 marks: Applying integ $\dot{0}(q \sec^2 q + \tan q \sec^2 q) dq = \dot{0}(q + \tan q) \sec^2 q)$ $\mathbf{h}(q)$ and $\mathbf{g}(q)$ are trigonometric functions in $\mathbf{h}(q)$ and $\mathbf{g}(q)$ are trigonometric functions in $= (q + \tan q) \tan q - \dot{0}(1 + \sec^2 q) \tan q \{ dq \}$ $= (q + \tan q) \tan q - \dot{0}(1 + \sec^2 q) \tan q \{ dq \}$ $= (q + \tan q) \tan q - \dot{0}(\tan q + \tan q \sec^2 q) \{ dq \}$ $= (q + \tan q) \tan q - \ln(\sec q) - \dot{0} \tan q \sec^2 q$ $= (q + \tan q) \tan q - \ln(\sec q) - \dot{0} \tan q \sec^2 q$ $= (q + \tan q) \tan q - \ln(\sec q) - \frac{1}{2} \tan^2 q$ $\text{or } = (q + \tan q) \tan q - \ln(\sec q) - \frac{1}{2} \sec^2 q$ etc \mathbf{Note} Allow the first two marks in part (\mathbf{Note} \mathbf{Note} Allow 3rd M1 2 nd A1 marks for eit embedded in their working \mathbf{Note} \mathbf{Mote}	SchemeWay 2 for the first 5 marks: Applying integration to $\hat{0}(q \sec^2 q + \tan q \sec^2 q) dq = \hat{0}(q + \tan q) \sec^2 q dq,$ $\hat{0}(q \sec^2 q + \tan q \sec^2 q) dq = \hat{0}(q + \tan q) \sec^2 q dq,$ $\mathbf{h}(q)$ and $\mathbf{g}(q)$ are trigonometric functions in q and \mathbf{g} $\mathbf{h}(q)$ and $\mathbf{g}(q)$ are trigonometric functions in q and \mathbf{g} $= (q + \tan q) \tan q - \hat{0}(1 + \sec^2 q) \tan q \{dq\}$ $= (q + \tan q) \tan q - \hat{0}(\tan q + \tan q \sec^2 q) \{dq\}$ $= (q + \tan q) \tan q - \mathbf{n}(\sec q) - \hat{0} \tan q \sec^2 q \{dq\}$ $= (q + \tan q) \tan q - \ln(\sec q) - \hat{0} \tan q \sec^2 q \{dq\}$ $= (q + \tan q) \tan q - \ln(\sec q) - \frac{1}{2} \tan^2 q$ $\text{or } = (q + \tan q) \tan q - \ln(\sec q) - \frac{1}{2} \sec^2 q$ etc.NoteAllow the first two marks in part (c) for q NoteAllow 3rd M1 2 nd A1 marks for either \tan^2 embedded in their workingQuestionNoteAllow M1 for an answer of $k = awrt 2.72$	SchemeNotesWay 2 for the first 5 marks: (q sec² q + tan q sec² q)dq = $\hat{0}(q + \tan q) \sec^2 q dq$, $\hat{0}(q \sec^2 q + \tan q \sec^2 q)dq = \hat{0}(q + \tan q) \sec^2 q dq$, $\frac{dv}{dq} = \sec^2 q \Rightarrow v = \tan q = g(q)$ h(q) and $g(q)$ are trigonometric functions in q and $g(q)$ = their $\hat{0} \sec^2 q dq$. [Note: $g(q)^{-1} \sec^2 q$] $A(q + \tan q)g(q) - B\hat{0}(1 + h(q))g(q), A > 0, B > 0$ dependent on the previous M mark Either $I[(q + \tan q) \tan q - \hat{0}(1 + \sec^2 q) \tan q] dq]$ $= (q + \tan q) \tan q - \hat{0}(1 + \sec^2 q) \tan q \{dq\}$ $A(q + \tan q)g(q) - B\hat{0}(1 + h(q))g(q), A > 0, B > 0$ dependent on the previous M mark Either $I[(q + \tan q) \sec^2 q] \rightarrow A(q + \tan q) \tan q - B\hat{0}(1 + h(q)) \tan q, A^{-1} 0, B > 0$ or $(q + \tan q) \tan q - \hat{0}(1 + h(q)) \tan q$ $= (q + \tan q) \tan q - \hat{0}(\tan q + \tan q \sec^2 q) \{dq\}$ $(q + \tan q) \tan q - \hat{0}(1 + h(q)) \tan q$ $= (q + \tan q) \tan q - \ln(\sec q) - \hat{0} \tan q \sec^2 q \{dq\}$ $= (q + \tan q) \tan q - \ln(\sec q) - \hat{0} \tan q \sec^2 q \{dq\}$ $(q + \tan q) \tan q - \ln(\sec q) = 0$ $(1 + h(q)) \tan q - \ln(\sec q) = 0$ $(1 + h(q)) \tan q - \ln(\sec q) = 0$ $(1 + h(q)) \tan q - \ln(\sec q) = 0$ $(1 + h(q)) \tan q - \ln(\sec q) = 0$ $(1 + h(q)) \tan q - \ln(\sec q) = 0$ $(1 + \tan q) \tan q - \ln(\sec q) = 0$ $(1 + \tan q) \tan q - \frac{1}{2} \tan^2 q$ $(r + \tan q) \tan q - \frac{1}{2} \tan^2 q$ $(r + \tan q) \tan q - \frac{1}{2} \tan^2 q$ $(r + \tan q) \tan q - \frac{1}{2} \sec^2 q$ NoteAllow the first tree marks in part (c) for $q \tan q - \frac{1}{2} \tan^2 q$ or $(q + \tan q) \tan q - \frac{1}{2} \sec^2 q$ $(r + \tan q) \tan q - \frac{1}{2} \sec^2 q$ NoteAllow 3rd M1 2rd A1 marks for either $\tan^2 q - \frac{1}{2} \tan^2 q$ or $\tan^2 q - \frac{1}{2} \sec^2 q$ $(r + 2\pi)^2 q + \frac{1}{2} \sqrt{\frac{1}{2} \sqrt{\frac{1}{2}}}$ NoteAllow M1 for an answer of $k = awt 2.72$ without reference to $\frac{\sqrt{3}p}{2}$ or $\frac{3p}{2\sqrt{3}}$			

Summer	2017
--------	------

www.mystudybro.com

Mathematics C4

at Danar (2017	WWW.Mystudybro.co						
st Paper (Mark Schem			666				
8. (b)	Note	To gain A1, dq does not need to appear until the	ey obtain $3\hat{0}(q \sec^2 q + \tan q \sec^2 q)dq$					
	Note	For M1, their $\frac{dx}{dq}$, where their $\frac{dx}{dq} \stackrel{1}{\rightarrow} 3q \sin q$, needs to be a trigonometric function in q						
	Note	Writing $\hat{0}(\sec^3 q)(3\sin q + 3q\cos q) = 3\hat{0}(q\sec^2 q + \tan q\sec^2 q)dq$ is sufficient for B1M1A1						
	Note	Writing $\frac{dx}{d\theta} = 3\sin\theta + 3\theta\cos\theta$ followed by writing is sufficient for B1M1A1	ting $\oint y \frac{dx}{dq} dq = 3 \oint (q \sec^2 q + \tan q \sec^2 q)$)d <i>q</i>				
	Note	The final A mark would be lost for $\hat{0}\frac{1}{\cos^3 q}$ 3sin [lack of brackets in this particular case].	$q + 3q\cos q = 3 \dot{0} (q \sec^2 q + \tan q \sec^2 q) d$	q				
	Note	Give 2^{nd} B0 for $a = 0$ and $b = 60^{\circ}$, without refe	evence to $b = \frac{p}{3}$					
(c)	Note	A decimal answer of 7.861956551 (without a c	correct exact answer) is A0.					
	Note	First three marks are for integrating $\theta \sec^2 \theta$ wit	· · · · · · · · · · · · · · · · · · ·					
	Note	Fourth and fifth marks are for integrating $\tan \theta$ s						
	Note	Candidates are not penalised for writing $\ln \sec q$	as either $\ln(\sec q)$ or $\ln \sec q$					
	Note	$q \sec^2 q \rightarrow q \tan q + \ln(\sec q)$ WITH NO INTER	RMEDIATE WORKING is M0M0A0					
	Note	$q \sec^2 q \rightarrow q \tan q - \ln(\cos q)$ WITH NO INTEL						
	Note	$q \sec^2 q \rightarrow q \tan q - \ln(\sec q)$ WITH NO INTERMEDIATE WORKING is M1M1A1						
	Note	$q \sec^2 q \rightarrow q \tan q + \ln(\cos q)$ WITH NO INTERMEDIATE WORKING is M1M1A1						
	Note	Writing a correct $uv - i v \frac{du}{dx}$ with $u = q$, $\frac{dv}{dq} = \tan q$, $\frac{du}{dq} = 1$ and $v =$ their $g(q)$ and making one error in the direct application of this formula is 1 st M1 only.						
8. (c)	Alternativ	we method for finding $\hat{0}$ tan $q \sec^2 q dq$						
	$\frac{\mathrm{d}v}{\mathrm{d}q} = \mathrm{se}$	$q \implies \frac{\mathrm{d}u}{\mathrm{d}q} = \sec^2 q$ $c^2 q \implies v = \tan q$ $uq \sec^2 q \mathrm{d}q = \tan^2 q - \hat{0} \tan q \sec^2 q \mathrm{d}q$						
	Þ 2òtan	$q \sec^2 q \mathrm{d}q = \tan^2 q$						
		1	$\tan\theta\sec^2\theta \text{ or } \to \pm C\tan^2q$	M				
) tanqsec	$e^2 q \mathrm{d}q = \frac{1}{2} \tan^2 q$	$\tan q \sec^2 q \to \frac{1}{2} \tan^2 q$	A1				
	or $\begin{cases} u = 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	$\sec q \qquad \Rightarrow \frac{\mathrm{d}u}{\mathrm{d}q} = \sec q \tan q$ $= \sec q \tan q \qquad \Rightarrow v = \sec q$	$\tan q \sec^2 q \to \frac{1}{2} \tan^2 q$	A1				
	or $\begin{cases} u = \frac{dv}{dq} \end{cases}$	$\sec q \qquad \Rightarrow \frac{\mathrm{d}u}{\mathrm{d}q} = \sec q \tan q $	$\tan q \sec^2 q \to \frac{1}{2} \tan^2 q$	A1				
	or $\begin{cases} u = \frac{dv}{dq} \\ \hline p \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\sec q \qquad \Rightarrow \frac{\mathrm{d}u}{\mathrm{d}q} = \sec q \tan q$ $= \sec q \tan q \qquad \Rightarrow v = \sec q$	$\tan q \sec^2 q \to \frac{1}{2} \tan^2 q$	A1				
	or $\begin{cases} u = \\ \frac{dv}{dq} \\ P \ 0 \tan q \\ P \ 2 0 \tan q \end{cases}$	$sec q \qquad \Rightarrow \frac{du}{dq} = sec q \tan q$ $= sec q \tan q \Rightarrow v = sec q$ $gsec^2 q dq = sec^2 q - \hat{0} sec^2 q \tan q dq$	$\tan q \sec^2 q \to \frac{1}{2} \tan^2 q$ $\tan \theta \sec^2 \theta \text{ or } \to \pm C \sec^2 q$	A1				