MyStudyBro - Revision Exercise Tool

This Revision Handout includes the Questions and Answers of a total of 5 exercises!

Chapters:

Collisions - M1 (Pearson Edexcel)

Page 1	(WME01) 2019 Winter
Page 2	(WME01) 2019 Winter - Answer
Page 3	(WME01) 2018 Winter
Page 4	(WME01) 2018 Winter - Answer
Page 6	(WME01) 2018 Summer
Page 7	(WME01) 2018 Summer - Answer
Page 8	(WME01) 2018 Autumn
Page 9	(WME01) 2018 Autumn - Answer
Page 10	(WME01) 2017 Autumn
Page 11	(WME01) 2017 Autumn - Answer

Past Paper

Mathematics M1

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

WME01

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

1.	Two particles, A and B , have masses $2m$ and $3m$ respectively. They are moving towards each other in opposite directions along the same straight line on a smooth horizontal plane when they collide directly. Immediately before they collide, the speed of A is $3u$ and the speed of B is A is a result of the collision, the speed of A is halved and the direction of motion of each particle is reversed.	
	(i) Find the speed of B immediately after the collision.	
	(ii) Find the magnitude of the impulse exerted on A by B in the collision. (6)	

Past Paper (Mark Scheme)

www.mystudybro.com

Mathematics M1 This resource was created and owned by Pearson Edexcel

WMF01

Question Scheme Marks Number M1 A1 1(i) $6mu - 3mu = -2m \cdot \frac{3u}{2} + 3mv$ v = 2u**A**1 (ii) M1 A1 $I = \pm 2m(\frac{3u}{2} - -3u)$ **A**1 Magnitude = 9mu $I = \pm 3m(2u - -u)$ M1 A1 OR: Magnitude = 9muA1 6 **Notes** M1 for CLM with correct no. of terms to give an equation in one unknown. Allow 1(i) consistent extra g's and/or cancelled m's. Condone sign errors (They may obtain this equation by finding the impulse on each and eliminating the impulse – apply the *same* criteria, including condone sign errors) First A1 for a correct unsimplified equation. Allow: $6mu - 3mu = -2m \cdot \frac{3u}{2} - 3mv$ Second A1 for 2*u* (must be positive) (N.B. If all terms in the CLM are given the same sign, this leads to 2u M1A0A0) (ii) M1 for dimensionally correct Impulse-momentum equation with consistent use of 2m or 3*m* (i.e. M0 if *g* included or *m* omitted.) **N.B.** Mark the actual equation not the formula (some candidates use I = m(v + u) when the direction has been reversed) First A1 for a correct unsimplified equation Second A1 for 9mu (must be positive)

www.mystudybro.com

■ Past Paper

This resource was created and owned by Pearson Edexcel

WME01

Leave blank

DO NOT WRITE IN THIS AREA

- 3. Two particles A and B have mass 2m and km respectively. The particles are moving in opposite directions along the same straight smooth horizontal line so that the particles collide directly. Immediately before the collision A has speed 2u and B has speed u. The direction of motion of each particle is reversed by the collision. Immediately after the collision the speed of A is $\frac{u}{2}$.
 - (a) Find, in terms of m and u, the magnitude of the impulse exerted by B on A in the collision.

(3)

(b) Show that k < 5

(4)

Question Number	Scheme	Marks
3a	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	Impulse on $A = 2m\left(\frac{u}{2} - (-2u)\right)$	M1A1
	Magnitude of impulse $=5mu$	A1
		(3)
3b	CLM: $2m \times 2u - km \times u = 2m \times \left(-\frac{u}{2}\right) + kmv$	M1A1
	Use of $v > 0$: $kmv = 5mu - kmu > 0$	DM 1
	$\Rightarrow k < 5$ Given Answer	A1 (4)
3b alt	Alternative : Impulse on <i>B</i> : $5mu = km(v - (-u))$ M1A1	(1)
	$v = \frac{5u}{k} - u \mathbf{OR} \qquad k = \frac{5u}{u + v}$	
	Use of $v > 0$: $\frac{5u}{k} - u > 0 \Rightarrow k < 5$ OR if $v > 0$, then $k < 5$	
	Given Answer DM1A1	
	(4)	[7]
	Notes for question 3	L'J
3a	M1 for using impulse = change in momentum for A (M0 if <i>clearly</i> adding momenta or if g is included or if not using $2m$ in <i>both</i> terms) but condone sign errors.	
	First A1 for $2m\left(\frac{u}{2} - (-2u)\right)$ or $-2m\left(\frac{u}{2} - (-2u)\right)$	
	Second A1 for 5 <i>mu</i> (must be positive since magnitude) terms collected	
	Alternative : Use CLM to find $v = \frac{5u}{k} - u$ then use	
3a alt	Impulse on $B := km ((5u/k - u) + u)$ M1A1 for the <u>complete</u> method	
	=5mu A1	
3b	First M1 for CLM with correct no. of terms, all dimensionally correct. Condone consistent <i>g</i> 's or cancelled <i>m</i> 's and sign errors. First A1 for a correct equation (allow $-v$ in place of v)	
	Second DM 1 for use of $v > 0$ or $v < 0$ as appropriate	
	Second A1 for given answer correctly obtained.	

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

WME01

Question Number	Scheme	Marks
	First M1 for using their impulse on $A = \text{change in momentum for } B \text{ (M0)}$	
3balt	if <i>clearly</i> adding momenta or if g is included or if not using km in both	
	terms) but condone sign errors.	
	First A1 for a correct equation (allow $-v$ in place of v)	
	Second DM 1 for use of $v > 0$ or $v < 0$, as appropriate, but must be from	
	a correct <i>v</i> or <i>k</i> , to deduce given answer.	
	Second A1 for given answer correctly obtained.	

Past Paper

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

WME01 Leave

blank

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

 Particle P has mass 3m and particle Q has mass m. The other in opposite directions along the same straight li The particles collide directly. Immediately before the caspeed of Q is 3u. In the collision, the magnitude of the second of P immediately after the collision. 	ne on a smooth horizontal plane. ollision the speed of P is u and the impulse exerted by Q on P is $5mu$.
(ii) Find the speed of Q immediately after the collision	(6)

Mechanics 1 - WME01 June 2018 Mark Scheme

Question Number	Scheme	Marks	Notes
	$ \begin{array}{cccc} & & & & & & & & \\ P & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & & \\ & & & & & & \\ \end{array} $ $ \begin{array}{ccccc} & & & & & & \\ & & & & & & \\ \hline & & & & & \\ \end{array} $ $ \begin{array}{cccccc} & & & & & & \\ & & & & & \\ \hline & & & & & \\ \end{array} $		Mark parts (i) and (ii) together For marking:1st equation in one unknown M1A1 2nd equation in one unknown M1A1 1st value A1, 2nd value A1
1i.	Impulse - momentum equation for P	M1	Must be trying to subtract. Terms dimensionally consistent.
	$5mu = 3m(v_Pu)$	A1	Correct unsimplified equation
	$v_P = \frac{2u}{3}$	A1	Final answer positive Condone unexplained sign change
1ii.	Impulse momentum equation for Q	M1	Must be trying to subtract Terms dimensionally consistent.
	$5mu = m(v_Q3u)$	A1	Correct unsimplified equation
	$v_Q = 2u$	A1	
1ii alt	Use of CLM	M1	Need all terms and dimensionally consistent. Condone sign errors.
	$3mu - 3mu = -3m\frac{2u}{3} + mv_Q$ or $3mu - 3mu = 3mv_P + 2mu$	A1	Correct unsimplified equation
	$v_Q = 2u$	A1	Final answer positive Condone unexplained sign change
		[6]	

■ Past Paper

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

WME01 Leave

DO NOT WRITE IN THIS AREA

DO NOTWRITE INTHIS AREA

DO NOT WRITE IN THIS AREA

blank

1.	A particle P of mass $0.8 \mathrm{kg}$ is moving along a straight horizontal line on a smooth hoizontal surface with speed $4 \mathrm{ms^{-1}}$. A second particle Q of mass $2 \mathrm{kg}$ is moving, in the opposite direction to P , along the same straight line with speed $2 \mathrm{ms^{-1}}$. The particles collide directly. Immediately after the collision the direction of motion of each particle is reversed and the speed of P is $2.5 \mathrm{ms^{-1}}$.
	(a) Find the speed of Q immediately after the collision. (3)
	(b) Find the magnitude of the impulse exerted by <i>Q</i> on <i>P</i> in the collision, stating the units of your answer.
	(3)

Past Paper (Mark Scheme)

WME01

Oct 2018 IAL WME01 (M1) **FINAL**

Question Number	Scheme	Marks
1(a)	$0.8 \times 4 - 2 \times 2 = 2\nu - 0.8 \times 2.5$	M1A1
	$v = 0.6 \text{ m s}^{-1}$	A1 (3)
(b)	I = 0.8(4+2.5) = 5.2, Ns or kg m s ⁻¹	M1A1,B1 (3)
	OR : $I = 2(0.6 + 2) = 5.2$, Ns or kg m s ⁻¹	M1A1,B1
	Notes for qu 1	[0]
1a	M1 for CLM, correct no. of terms, dim correct, condone extra <i>g</i> 's throughout and sign errors, in one unknown, with correct pairings of mass and velocity. N.B. Apply <u>same</u> criteria to an equation that has been found by eliminating the impulse from two imp-mom equations.	
	First A1 for a correct equation (condone extra g's)	
	Second A1 for 0.6 (Must be positive)	
1b	M1 for Impulse – Momentum equation for either particle, correct no. of terms, with correct velocities, condone sign errors N.B. Mark the actual equation not the formula (some candidates use $I = m(v+u)$ when the direction has been reversed)	
	M0 if g included on momentum terms	
	A1 for 5.2 (Must be positive)	
	B1 for Ns or kg m s ⁻¹ N.B. M0A0B1 is possible	

Past Paper

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

WME01

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

		Leave blank
3.	Two particles P and Q have masses $4m$ and m respectively. They are moving in opposite directions towards each other along the same straight line on a smooth horizontal plane and collide directly. Immediately before the collision the speed of P is $2u$ and the speed of Q is $4u$. In the collision, the particles join together to form a single particle.	
	Find, in terms of m and u , the magnitude of the impulse exerted by P on Q in the collision.	
	(6)	

WME01

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question Number	Scheme	Marks	3
	Second A1 for $R_c = 80$ (N)		
	Second M1 for a moments equation or a vertical resolution		
	Third A1 for a correct equation (R_C and/or R_D do NOT need to be		
	substituted but if one is, it can be their value found from a previous		
	equation)		
	Fourth A1 for $R_D = 1400$ (N)		
	Enter marks for equations on ePEN, in the order they appear		
	First M1 for a moments equation or a vertical resolution		
2b	First A1 for a correct equation (R_C and/or R_D do NOT need to be		
	substituted but if one is, it can be their value found from a previous		
	equation)		
	Second M1 for a moments equation or a vertical resolution		
	Second A1 for a correct equation (R_C and/or R_D do NOT need to be		
	substituted but if one is, it can be their value found from a previous		
	equation)		
	Third A1 for $x = 2.5$		
	Enter marks for equations on ePEN, in the order they appear		
	N.B. Equations may contain any or all of R_C , R_D or x for M marks but		
	must contain only one of R_C or R_D to earn the A mark.		
	N.B. If they assume that $R_D = 520$, they lose all the marks for part (b).		
	N.B If they start with $2R = 1480$ and then add or subtract (or both) 520		
	to their R value, M0.		
	N.B. If brackets are omitted in a moments equation e.g. $(520 + R_C).4$ is		
	written as $520 + R_C.4$, the M mark can be scored		
3	8mu - 4mu = 5mv	M1A1	
3		Al	
	v = 0.8u For P: $-I = 4m(0.8u - 2u)$	M1 A1	
	, ,		
	I = 4.8 mu	A1	
	OD For O. I mill far I day	3/1 4 1	
	OR For Q : $I = m(0.8u + 4u)$	M1 A1	
	I = 4.8 mu	A1	
	NT-4		6
	Notes First M1 for CLM with correct no of terms all dimensionally correct to give		
	First M1 for CLM with correct no. of terms, all dimensionally correct, to give an equation in m , u and their v only. Condone consistent g 's or cancelled m 's		
3	and sign errors.		
	(N.B. The CLM equation could be obtained by equating the magnitudes of the		
	impulses on each particle)		
	First A1 for a correct equation (they may have - 5mv)		
	Second A1 for $0.8u$ or $-0.8u$ (as appropriate)		
	Second M1 for using Impulse = Change in Momentum for either P or Q		
	(M0 if <i>clearly</i> adding momenta or if g is included or if different mass in the		
	two momentum terms) but condone sign errors.		

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

WME01

Question Number	Scheme	Marks
	Third A1 for $4m(0.8u-2u)$ or $-4m(0.8u-2u)$ OR for $m(0.8u+4u)$ or $-m(0.8u+4u)$ Fourth A1 for $4.8mu$ (must be positive since magnitude)	
4(i)	$ \mathbf{F}_2 ^2 = 8^2 + 14^2 - 2 \times 8 \times 14 \cos 30$ Solve for $ \mathbf{F}_2 = 8.1$ (N) or better	M1 A1 M1 A1 (4)
	OR: $ \frac{ \mathbf{F}_2 \cos \alpha = 14 \cos 30 - 8}{ \mathbf{F}_2 \sin \alpha = 14 \sin 30} $	M1 A1
	Solve for $ \mathbf{F}_2 = 8.1$ (N) or better	M1 A1 (4)
4(ii)	$\frac{\sin \theta}{8} = \frac{\sin 30}{8.12467} \text{ or } \frac{\sin \phi}{14} = \frac{\sin 30}{8.12467}$	M1 A1
	Solve: $\theta = 29.49^{\circ}$ or $\phi = 120.51^{\circ}$ Bearing is 149° (nearest degree)	M1 A1 A1 (5)
	OR: $ \frac{ \mathbf{F}_2 \cos\alpha = 14\cos 30 - 8 = 4.124(355.)}{ \mathbf{F}_2 \sin\alpha = 14\sin 30} $	M1 A1
	Solve: $\alpha = 59.49^{\circ}$ Bearing is 149° (nearest degree)	M1 A1 A1 (5)
	Notes	
4(i)	First M1 for use of cos rule with 30° First A1 for a correct equation OR: First M1 for 'resolving' in 2 directions with $30^{\circ}/60^{\circ}$ (N.B. M0 here if cos/sin confused) First A1 for TWO correct equations Second M1 for solving for $ \mathbf{F}_2 $, independent but must be solving a 'correct cosine formula but with wrong angle' if using method 1	
	OR for eliminating α from two equations, <u>independent</u> but equations must have the correct structure if using method 2 Second A1 for 8.1 (N) or better	
4(ii)	First M1 for use of sin rule with 30° First A1 for a correct equation (allow 8.12 or better) OR: First M1 for 'resolving' in 2 directions with 30° / 60°	