MyStudyBro - Revision Exercise Tool

This Revision Handout includes the Questions and Answers of a total of 5 exercises!

Chapters:

Page 1 (WME01) 2019 Winter

Graph Sketching

Page 2 (WME01) 2019 Winter - Answer

Also Includes: Graph Sketching

Page 4 (WME01) 2018 Winter

Graph Sketching

Page 5 (WME01) 2018 Winter - Answer

Also Includes: Graph Sketching

Page 7 (WME01) 2018 Summer

Graph Sketching

Page 8 (WME01) 2018 Summer - Answer

Also Includes: Graph Sketching

Page 10 (WME01) 2018 Autumn

Page 11 (WME01) 2018 Autumn - Answer

Page 12 (WME01) 2018 Autumn

Graph Sketching

Page 13 (WME01) 2018 Autumn - Answer

Also Includes: Graph Sketching

www.mystudybro.com

Mathematics M1

Past Paper This resource was created and owned by Pearson Edexcel

WME01

Leave blank

DO NOT WRITE IN THIS AREA

- 6. A train travels for a total of 270s along a straight horizontal track between two stations A and B. The train starts from rest at A and moves with constant acceleration for 60s until it reaches a speed of $V \, \text{m s}^{-1}$. The train then travels at this constant speed $V \, \text{m s}^{-1}$ before it moves with constant deceleration for 30s, coming to rest at B.
 - (a) Sketch below a speed-time graph for the journey of the train between the two stations *A* and *B*.

(2)

Given that the distance between the two stations is 4.5 km,

(b) find the value of V,

(3)

(c) find how long it takes the train to travel from station A to the point that is exactly halfway between the two stations.

(4)

The train is travelling at speed $\frac{1}{4}V$ m s⁻¹ at times T_1 seconds and T_2 seconds after leaving station A.

(d) Find the value of T_1 and the value of T_2

(5)

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

WME01

Question Number	Scheme	Mark	S
6(a)		D1 G1	
	<i>"</i> ↑	B1 Shape	
	,	B1 Figs. ar	$\operatorname{nd} V$
	/!		(2)
			(2)
	$t \longrightarrow t$		
	O 60 240 270		
(b)	(270 ± 180) 1 1		
	$4500 = \frac{(270 + 180)}{2}V \qquad \text{OR} 4500 = \frac{1}{2}60V + 180V + \frac{1}{2}30V$	M1 A1	
	V = 20	. 1	(2)
	, 20	A1	(3)
(c)	$\frac{(T+T-60)}{2} \times 20 = 2250$ OR $\frac{1}{2}60.20 + (T-60).20 = 2250$	M1 A2 ft	
	2	WII AZ II	
	T = 142.5 s	A1	(4)
(d)	1	M1	
	$T_1 = \frac{1}{4} \times 60$	1411	
	=15	A1	
	$T_2 = 270 - \left(\frac{1}{4} \times 30\right)$ OR $240 + \left(\frac{3}{4} \times 30\right)$	M1 A1	
	= 262.5	A1	(5)
	- Z0Z.3		14
	Notes		14
6(a)	First B1 for a trapezium (not to scale) starting and finishing on the <i>t</i> -axis but B0 if solid		
(u)	vertical lines included		
	Second B1 for 3 figs. (60, 270 and use of 30 with a delineator or 240) and <i>V</i> . 270 can be implied by 3 correct delineators		
6(b)	M1 for a complete method to produce an equation, in V only, with the correct structure i.e.		
. ,	one trapezium		
	or two triangles + rectangle or triangle + trapezium		
	or trapezium + triangle		
	or rectangle – two triangles = 4500 (allow 4.5 for the M mark)		
	(M0 if a single <i>suvat</i> equation is used) First A1 for a correct unsimplified equation		
	Second A1 for $V = 20$		
6(c)	M1 for a complete method to produce an equation, in <i>ONE</i> variable e.g. t where		
, ,	t = (T - 60), with the correct structure		
	i.e. one trapezium or triangle + rectangle		
	or rectangle = 2250 (allow 2.25 for the M mark)		
	(M0 if a single <i>suvat</i> equation is used)		
	First and second A1's for a correct unsimplified equation ft on their 20 -1 each error		
	Third A1 for 142.5 (s) cao Accept 143.		
6(d)	First M1 for a complete method to give an equation in T_1 only		
6(d) MSB -	Page 2		

Winter 2019

www.mystudybro.com

Mathematics M1
WME01

Past Paper (Mark Scheme)

This resource was created and owned by Pearson Edexcel

First A1 for 15 (independent of V so allow even if their V is wrong)

Second M1 for a complete method to give an equation in T_2 only

Second A1 for a correct equation

Third A1 for 262.5 (independent of V so allow even if their V is wrong) Accept 263

N.B. Accept $T_1 = 262.5$ and $T_2 = 15$

Mathematics M1 WME01

■ Past Paper

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Leave blank

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

5.	A cyclist is travelling along a straight horizontal road. The cyclist starts from rest at point A on the road and accelerates uniformly at 0.6 m s^{-2} for 20 seconds. He then moves at constant speed for $4T$ seconds, where $T < 20$. He then decelerates uniformly at 0.3 m s^{-2} and after T seconds passes through point B on the road. The distance from A to B is 705 m.
	(a) Sketch a speed-time graph for the motion of the cyclist between points A and B. (2)
	(b) Find the value of T . (7)
	The cyclist continues his journey, still decelerating uniformly at 0.3 m s^{-2} , until he comes to rest at point C on the road.
	(c) Find the total time taken by the cyclist to travel from A to C. (3)

Question Number	Scheme	Mark	S
5a	Speed 20 4T T Time		
	Basic shape	B1	
	20, 4 <i>T</i> and <i>T</i> placed correctly	DB 1	(2)
			(2)
5b	Use of $v = u + at$: constant speed = $0.6 \times 20 = 12$ (ms ⁻¹)	M1A1	
	(Speed at end = $12-0.3T$)		
	Using <i>v-t</i> graph: Distance: $705 = \frac{12}{2} (4T + (20 + 4T)) + \frac{T}{2} (12 + (12 - 0.3T))$	M1A2	
	$= 48T + 120 + 12T - 0.15T^{2} = 60T + 120 - 0.15T^{2}$		
	Form 3 term quadratic and solve for <i>T</i> :		
	$\Rightarrow 3T^2 - 1200T + 11700 = 0 \qquad \left(T^2 - 400T + 3900 = 0\right)$	M1	
	$\Rightarrow (T-10)(T-390) = 0 T = 10 \text{ only}$	A1	
			(7)
	Alternative: Use of $v = u + at$: constant speed = $0.6 \times 20 = 12$ (ms ⁻¹) M1A1		
	1		
	Using $s = ut + \frac{1}{2}at^2$: $705 = (0.3 \times 400) + (4T \times 12) + (12T - 0.15T^2)$		
	M1A2		
	$\Rightarrow 0.15T^2 - 60T + 585 = 0 \left(T^2 - 400T + 3900 = 0 \right)$		
	$\Rightarrow (T-10)(T-390) = 0 T=10 only M1A1$		
	(7)		
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
5c	Extra time: (2×20) – their T OR $\frac{12-0.3\times their T}{0.3}$	B1	
	Total time: $20+5T+40-T$ (their T)	M1	
	=100 (s)	A1	(2)
			(3)
	Alternative : Total time to decelerate to rest = 12/0.3 = 40 B1		
	Total time A to $C = 20 + 4T + 40 = 100$ M1A1		
			[12]

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Notes for question 5 for basic shape. Allow if 'extra triangle' on end included, B clearly marked OB1: may use, 20 , $20 + 4T$, $20 + 5T$ for attempt to find constant speed ($v = u + at$ or $a = \text{gradient}$) 20×0.6 for 12 generous) M1 for clear attempt to use $705 = total$ area under the give an equation in T only but must see $\frac{1}{2}$ used somewhere Oif just a trapezium oe is used A1 and Third A1: for any correct equation, -1 e.e.o.o. If for forming and attempt to solve a 3 term quadratic $dence$ of solving e.g. formula or factorising, if T values are otherwise this M mark can be implied if they state that $T = 10$ working. ($T = 390$ NOT needed) I for $T = 10$. total area, could see: apezium + Rectangle + Triangle	
B clearly marked DB1: may use, 20 , $20 + 4T$, $20 + 5T$ for attempt to find constant speed ($v = u + at$ or $a = \text{gradient}$) 20×0.6 for 12 generous) M1 for clear attempt to use $705 = total$ area under the give an equation in T only but must see ½ used somewhere 0 if just a trapezium oe is used 1 and Third A1: for any correct equation, -1 e.e.o.o. 1 for forming and attempt to solve a 3 term quadratic dence of solving e.g. formula or factorising, if T values are 1) otherwise this M mark can be implied if they state that $T = 10$ working. ($T = 390$ NOT needed) 1 for $T = 10$.	
B clearly marked DB1: may use, 20 , $20 + 4T$, $20 + 5T$ for attempt to find constant speed ($v = u + at$ or $a = \text{gradient}$) 20×0.6 for 12 generous) M1 for clear attempt to use $705 = total$ area under the give an equation in T only but must see ½ used somewhere 0 if just a trapezium oe is used 1 and Third A1: for any correct equation, -1 e.e.o.o. 1 for forming and attempt to solve a 3 term quadratic dence of solving e.g. formula or factorising, if T values are 1) otherwise this M mark can be implied if they state that $T = 10$ working. ($T = 390$ NOT needed) 1 for $T = 10$.	
for attempt to find constant speed $(v = u + at \text{ or } a = \text{gradient})$ 20×0.6 for 12 generous) M1 for clear attempt to use $705 = total$ area under the give an equation in T only but must see $\frac{1}{2}$ used somewhere 0 if just a trapezium oe is used 1 and Third A1: for any correct equation, -1 e.e.o.o. 1 for forming and attempt to solve a 3 term quadratic dence of solving e.g. formula or factorising, if T values are 1 otherwise this M mark can be implied if they state that $T = 10$ working. $T = 10$ working. $T = 10$ total area, could see:	
for 12 generous) M1 for clear attempt to use $705 = total$ area under the give an equation in T only but must see $\frac{1}{2}$ used somewhere 0 if just a trapezium oe is used 1 and Third A1: for any correct equation, -1 e.e.o.o. 1 for forming and attempt to solve a 3 term quadratic dence of solving e.g. formula or factorising, if T values are 1) otherwise this M mark can be implied if they state that $T = 10$ working. $T = 10$ working. $T = 10$ total area, could see:	
generous) M1 for clear attempt to use $705 = total$ area under the give an equation in T only but must see $\frac{1}{2}$ used somewhere 0 if just a trapezium oe is used 1 and Third A1: for any correct equation, -1 e.e.o.o. 1 for forming and attempt to solve a 3 term quadratic dence of solving e.g. formula or factorising, if T values are 1) otherwise this M mark can be implied if they state that $T = 10$ working. $T = 10$ working. $T = 10$ total area, could see:	
give an equation in T only but must see $\frac{1}{2}$ used somewhere 0 if just a trapezium oe is used 1 and Third A1: for any correct equation, -1 e.e.o.o. 1 for forming and attempt to solve a 3 term quadratic dence of solving e.g. formula or factorising, if T values are 1) otherwise this M mark can be implied if they state that $T = 10$ working. $T = 10$ working. $T = 10$ total area, could see:	
for forming and attempt to solve a 3 term quadratic dence of solving e.g. formula or factorising, if T values are otherwise this M mark can be implied if they state that $T = 10$ working. ($T = 390$ NOT needed) 1 for $T = 10$.	
dence of solving e.g. formula or factorising, if T values are otherwise this M mark can be implied if they state that $T = 10$ working. $(T = 390 \text{ NOT needed})$ for $T = 10$.	
total area, could see:	
, and the second	
$(4T + (20+4T)) + T(12-0.3T) + \frac{1}{2}T \times 0.3T$ $(4T + (20+4T)) + T(12-0.3T) + \frac{1}{2}T \times 0.3T$ $(20.12 + (4T \times 12) + \frac{1}{2}T(12+12-0.3T))$ $(3T + (4T \times 12) + T(12-0.3T) + \frac{1}{2}T \times 0.3T$ $(3T + (4T \times 12) + T(12-0.3T) + \frac{1}{2}T \times 0.3T$ $(3T + (3T +$	
ther additional time is $\frac{12}{0.3}$ - T or time to decelerate is $\frac{12}{0.3}$	
00 cao	
	iangle + Rectangle + Trapezium (at top) $20.12+5T(12-0.3T)+\frac{1}{2}0.3T(5T+4T)$ Rectangle - triangle- triangle $(20+5T)-\frac{1}{2}.20.12-\frac{1}{2}T\times0.3T$ Ther additional time is $\frac{12}{0.3}-T$ or time to decelerate is $\frac{12}{0.3}$ correct method to find the total time, using their T $=20+4T+T+\frac{12}{0.3}-T$ or $20+4T+\frac{12}{0.3}$

WME01 Leave

blank

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

3.	A cyclist starts from rest at the point O on a straight horizontal road. The cyclist moves along the road with constant acceleration $2 \mathrm{ms^{-2}}$ for 4 seconds and then continues to move along the road at constant speed. At the instant when the cyclist stops accelerating, a motorcyclist starts from rest at the point O and moves along the road with constant acceleration $4 \mathrm{ms^{-2}}$ in the same direction as the cyclist. The motorcyclist has been moving
	for T seconds when she overtakes the cyclist.
	(a) Sketch, on the same axes, a speed-time graph for the motion of the cyclist and a speed-time graph for the motion of the motorcyclist, to the time when the motorcyclist overtakes the cyclist.
	(4)
	(b) Find, giving your answer to 1 decimal place, the value of <i>T</i> .
	(6)

Question Number	Scheme	Marks	Notes	
	ν 	B1 shape B1 figs	Correct shape graph for cyclist 4 marked	
3a	motorcyclist	B1 shape	Motorcyclist graph in relatively correct position Must start at $t = 4$ and must continue beyond point of intersection of the graphs	
	8 cyclist	B1 figs (4)	T+4 marked	
	$egin{array}{ c c c c c c c c c c c c c c c c c c c$		Treat two separate graphs as two attempts and award the marks for the better attempt	
3b	$\frac{1}{2}T.4T = \left(\frac{T+T+4}{2}\right)8$	M1	Equate distances to form equation in T	
		A1	One distance correct	
		A1	Both distances correct	
	$T^2 - 4T - 8 = 0$	A1	Simplify to 3 term quadratic	
	$T = 2 \pm \sqrt{12}$	M1	Solve a 3 term quadratic for T	
	T = 5.5	A1	Q asks for answer to 1 dp. Must reject negative solution if seen.	
		(6)		
		[10]		
			See over	

Question Number	Scheme	Marks	Notes
SC1	0 0 0 0 0 0 0 0 0 0		B1B1 B1B0 $16+8(T-4) = \frac{1}{2} \times 4(T-4)^2$ M1A1A1 $T^2 - 12T + 24 = 0$ (or equivalent) A1 $T = 6 + 2\sqrt{3} = 9.5$ M1A0 (marking the <i>T</i> as a misread)
SC2	$\begin{array}{c c} v \\ \hline 0 & 4 & T \end{array}$ motorcyclist		B1B1 B0B0 $16+8(T-4) = \frac{1}{2} \times 4T^2 \qquad \text{M1A1A1}$ $2T^2 - 8T + 16 = 0 \qquad \text{A0M0A0}$ (completely changed the question but some evidence of correct thinking)

Mathematics M1

■ Past Paper

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

WME01 Leave

DO NOT WRITE IN THIS AREA

blank

3.	At time $t = 0$, a stone is thrown vertically upwards with speed $19.6 \mathrm{ms^{-1}}$ from a powhich is h metres above horizontal ground. At time $t = 3 \mathrm{s}$, another stone is released rest from a point B which is also h metres above the same horizontal ground. Both so that the ground at time $t = T$ seconds. The motion of each stone is modelled as that particle moving freely under gravity.	from tones
	Find	
	(i) the value of T ,	
	(ii) the value of h .	(7)
		(7)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question Number	Scheme	Marks	
3	EITHER: $h = -19.6(t+3) + \frac{1}{2}g(t+3)^2$ and $h = \frac{1}{2}gt^2$ OR: $h = -19.6T + \frac{1}{2}gT^2$ and $h = \frac{1}{2}g(T-3)^2$	M1A1A1 M1A1A1	
	$-19.6T + \frac{1}{2}gT^{2} = \frac{1}{2}g(T-3)^{2} \mathbf{OR} \qquad -19.6(t+3) + \frac{1}{2}g(t+3)^{2} = \frac{1}{2}gt^{2}$	M1	
(i)	T = 4.5	A1	
(ii)	$h = \frac{1}{2} \times 9.8 \times (T - 3)^2 \text{oe}$	M1	
	=11 or 11.0	A1 [7]	
	Notes for qu 3		
3	First M1 for use of $s = ut + \frac{1}{2}at^2$ (or any other complete method) to produce an equation in h and T only or h and t only for stone 1 or 2, correct no. of terms but condone sign errors		
	First A1 for a correct equation for stone 1 (g does not need to be		
(i)	Second A1 for a correct equation for stone 2 N.B. Both A marks can be earned if they use s (instead of h or $-h$) in one of the two equations and then use s consistently in the other equation. N.B. When h and T are used in any equation, they must be used correctly (including sign of h) to obtain A marks Second M1 for eliminating h Third A1 for $T = 4.5$ Third M1 for using their T or t value in one of their equations to obtain an h value Fourth A1 for $h = 11$ or $h = 11$ o		

blank

DO NOT WRITE IN THIS AREA

5.

Figure 3

Two posts, A and B, are fixed at the side of a straight horizontal road and are 816 m apart, as shown in Figure 3. A car and a van are at rest side by side on the road and level with A. The car and the van start to move at the same time in the direction AB. The car accelerates from rest with constant acceleration until it reaches a speed of $24 \,\mathrm{m\,s^{-1}}$. The car then moves at a constant speed of $24 \,\mathrm{m\,s^{-1}}$. The van accelerates from rest with constant acceleration for $12 \,\mathrm{s}$ until it reaches a speed of $V \,\mathrm{m\,s^{-1}}$. The van then moves at a constant speed of $V \,\mathrm{m\,s^{-1}}$. When the car has been moving at $24 \,\mathrm{m\,s^{-1}}$ for $30 \,\mathrm{s}$, the van draws level with the car at B, and each vehicle has then travelled a distance of $816 \,\mathrm{m}$.

(a) Sketch, on the same diagram, a speed-time graph for the motion of each vehicle from *A* to *B*.

(3)

(b) Find the time for which the car is accelerating.

(3)

(c) Find the value of V.

(3)

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question Number	Scheme	Marks
5(a)	speed $(m s^{-1})$ V 24 T 12 $30+T$ t (sec) OR 30	B1 shape of either B1 shape of second (must cross first and end at the same t value) B1 V,24,12, T, T+30 oe with delineator B0 if vertical solid lines (3)
	N.B. 24 V t	This graph can score all 3 marks.
(b)	$\frac{1}{2}(T+30+30) \times 24 = 816 \mathbf{OR} \frac{1}{2} \times T \times 24 + 30 \times 24 = 816$	M1A1
	T = 8 (s)	A1 (3)
(c)	$\frac{1}{2}((T+30)+(T+18))V = 816 \mathbf{OR} \frac{1}{2} \times 12V + V(18+T) = 816$ $V = 25.5$	M1A1 ft A1 (3) [9]
ALT	(b) Dist travelled while accelerating $= 816 - 720 = 96 \text{ m}$	
	$s = \frac{u+v}{2}t \implies \left(\frac{0+24}{2}\right)T = 96$ M1A1	
	T=8 (s) A1	

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

WME01

Question Number	Scheme	Marks
	(c) Dist travelled by the van $=\frac{1}{2} \times 12V + (18+T) \times V = 816$ M1A1ft	
	V = 25.5 A1	
	Notes for qu 5	
5a	First B1 for shape of graph	
	Second B1 for shape of graph, crossing first graph Third B1 for <i>V</i> , 12, 24, <i>T</i> and <i>T</i> +30 placed correctly oe e.g. with delineators. Allow their <i>T</i> and (their <i>T</i> + 30) where they find <i>T</i> in (b) first.	
5b	M1 for equation in T or $t = T + 30$ only, using 816 distance travelled by CAR, with correct structure i.e. a trapezium or (triangle + rectangle) First A1 for a correct equation	
	Second A1 for 8 (s)	
	M1 for equation in <i>V only</i> , using 816 distance travelled by VAN, <i>with</i>	
5c	correct structure i.e. a trapezium or (triangle + rectangle) N.B. M0 if they assume the TOTAL time is 30 (or 42) when setting up the equation.	
	First A1 ft on their T value, for a correct equation Second A1 for $V = 25.5$	
	Second A1 101 v = 25.5	